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ABSTRACT-In this paper, a roll and pitch estimation algorithm using a set of accelerometers and wireless sensor
networks (S/N) is presented for use in a passenger vehicle. While an inertial measurement unit (IMU) is generally used
for roll/pitch estimation, performance may be degraded in the presence of longitudinal acceleration and yaw motion. To
compensate for this performance degradation, a new roll and pitch estimation algorithm is proposed that uses an
accelerometer array, global positioning system (GPS) and in-vehicle networks to get information from yaw rate and roll
rate sensors. Angular acceleration and roll and pitch approximation are first calculated based on vehicle kinematics. A
discrete Kalman filter is then applied to estimate both roll and pitch more precisely by reducing noise from the running
engine and from road disturbance. Finally, the feasibility of the proposed algorithm is shown by comparing its
performance experimentally with that of an IMU in the framework of an indoor test platform as well as a test vehicle.
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NOMENCLATURE

e : pitch, [rad]

] : roll, [rad]

v : yaw, [rad]

é : pitch rate, [rad/s]

¢ : 1ol rate, [rad/s)

v : yaw rate, [rad/s]

é : angular acceleration of pitch, [rad/s*]
¢'5 : angular acceleration of roll, [rad/s*]
¥ :angular acceleration of yaw, [rad/s?]
P, : measurement of &, [rad/s’]

Q.  :measurement of @, [rad/s]

Py, O measurement bias

Wg, W, © PrOCESs noise

Vg, Vg IMeasurement noise

g : gravity, [m/s?]

At : sampling time, [sec.]
SUBSCRIPTS

A, B, C : sensor nodal point

G : center of rotation

Lr : left, right
fr, rr: front, rear
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1. INTRODUCTION

As an interest in active safety systems for a passenger
vehicles has increased, multiple sensor types have been
developed and implemented to obtain information on
vehicle dynamics. In particular, inertial sensors such as
accelerometers and gyroscopes have received much
attention, with applications ranging from front/side crash
sensing for airbag control and roll stability control to
automotive navigation systems (Kim ez al., 2006; Ungoren
and Peng, 2004; Siemens, 2007; VTI, 2007). However,
the devices and sensors for active safety systems have
until recently been designed separately and independently,
as shown in Figure 1 (Siemens, 2007; VTI, 2007; Bosch,
2007). The primary reason for this may come from the
fact that large automobile manufactures subcontract the
supply of the active safety devices and systems to smaller
scale manufactures (Mostov et al., 1997). While many of
the active safety systems are in general operated
independently, most of them rely on the same types of
micro electro mechanical system (MEMS) inertial
sensors (refer to Figure 1) and a full integration of these
sensors will be the logical and inevitable direction to
reduce cost in the near future.

Over the last decade, much effort has been made to
estimate both roll and pitch angle, as these values
represent key information for active safety control of a
vehicle. Most of the approaches in the literature are based
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Figure 1. Sensor layout for active safety systems.

on either GPS or IMU. For instance, Ryu and Gerdes
proposed a method to measure road bank angle and road
grade by using GPS with multiple antennas (Ryu and
Gerdes, 2004). However, this approach requires intensive
computation to process the data of multiple antenna GPS
compared to that of single antenna GPS. Another roll/
pitch estimation algorithm using an IMU and wheel
speed sensing was proposed by Tseng et al. (2007). In
emergency situations with large acceleration or decelera-
tion, however, the performance can be degraded.

The contributions of this paper are twofold: the first is
to develop the estimation algorithm of roll and pitch for a
passenger vehicle using an accelerometer array and
single antenna GPS, and the second is to validate the
estimation algorithm experimentally. More specifically,
the signal processing algorithm will be combined with a
discrete Kalman filter to cancel out both sensor measure-
ment noise and disturbances resulting from the running
engine and the terrain. The feasibility of the roll and pitch
estimation algorithm will then be validated by comparing
its performance experimentally with that of a certain
IMU in the framework of an indoor test platform and a
real vehicle.

2. PROBLEM STATEMENT

In this section, vehicle kinematics are described under a
rigid-body assumption. Equations to calculate both roll
and pitch are then derived based on the kinematics, and
two technical problems related to the equations are
discussed. Finally, a sensor layout for estimating both roll
and pitch is described.

2.1. Kinematics of Vehicle
To derive the kinematics of the passenger vehicle, two
coordinate systems are considered: one is a fixed inertial

coordinate system I={0:e,é,,e;} where O is the
origin and {51,22,53} is a right-handed orthonormal
basis. The other is a body-fixed coordinate system
B={G: bpbzab3} where {bl,bz,b3} is a right-handed
orthonormal basis fixed on the rigid body. Then, as
shown in Figure 2, the displacement vector at a point A
with respect to the origin O is written as

ry =7510 tTa6 =Tg10 + X 5b + /b, +z,b; M
where 7, is the displacement vector from O to G with
respect to the fixed inertial coordinate I and 7, is the
vector from G to A with respect to the body-fixed system
B.

With the angular velocity and acceleration at point G
are given respectively as

@y = @b, +6by +yby , = by + 6y +jibs @
the acceleration at the point A can be written as
a
[ xf,(ez 2 Yoy, (0-)+ 2, - 6,
3
[ 9¢+¢// y1(¢ -y )+zﬁ(¢w 9)]172
+lep -0 309 +9)-z, 2 + 67,
b, A
wP % é; ’ ;
és ‘éz rga C G - blﬁj By" /é(,//
S e O O
o g ’

Figure 2. Coordinates and notations used to describe
vehicle kinematics.
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Assuming that the points A and B are in the same line
along the I;z axis and the points B and C are also in the
same line along the b, axis, the accelerations at the points
B and C, respectively, are similarly derived as follows:

o o s1e - .
[ (0¢+!// +y,(¢ l//)+zf,(¢l// 9)]52
[ 00 =6)-3, 65 +4)-z,. 3> + &,
+[ (ezw) 0= )+ 2, (-6, -

+[ Xpp 9¢+w +, (¢ ~y )+ zrr(¢«// 6’)]192
b 0-607)- 2,00 +9)- =, (2 + 6,
Using kinematics, the linear motion at the center of the
body is derived as follows (Greenwood, 1988).
ag :;6/0 = (\')x ¥, +0-v, -g-sin@)l;l
+(\'/y+y)-vx—¢~v2+g-sin¢cosﬂ)52 (©6)
+(\>Z —é.vx —¢~vy +g-cos¢c056)53

2.2. Problem Assumptions

If a; in Equation (6) can be measured by using a 2-axis
accelerometer, both pitch and roll can be calculated
respectively as follows

G B — ey — O
H:Sinl[vx A e ”2] @
g
4 = sin” ag- b2 —yv, +¢v ®)
gcos@

We may encounter two main problems when calculating
pitch and roll with Equations (7) and (8). The first is
whether the available sensors are capable of measuring
all possible information, the second is how well the
sensors can perform in the presence of measurement
noise and disturbances coming from a running engine
and a road surface. To reduce the number of sensors
without exacerbating the first problem, it is assurmed that
the vehicle is driven on a highway with relatively slow
changes in yaw. Thus, v, v, and v, are small and can be
neglected. According to this driving scenario, Equation
(7) and (8) can be approximated respectively as follows

v, —adg b
6 =sin [*——]4‘\)9 =0,,.0 T Vo (€

4

je sin—l(ac_'bu)w =ty (0

where 6,,,, and @, represent the approximated pitch and
roll respectively based on sensor measurements.

To calculate both 8,,,, and @,,,, above, it is assumed that
GPS is implemented to obtain absolute velocity (v,) and
its derivative (v, ), and both a 2-axis MEMS accelero-
meter and a yaw rate sensor are placed at point G In
addition, it is assumed that the vehicle contains 2-axis
MEMS accelerometers at points A, B, C and a roll rate
sensor at point G. The second problem above, which
concerns measurement noise, is addressed by the use of
an estimation algorithm that uses these additional sensors
to reduce the effect of sensor noise and disturbances. The
operation of this algorithm is described in the next
section.

3. ESTIMATION ALGORITHM

The proposed estimation algorithm to minimize the effect
of noise and disturbances is composed of two sequential
signal processing filters. The first filter is a pre-signal
processing filter to reduce the effects of measurement
noise and wireless communication noise. The second
filter is a discrete Kalman filter to minimize the effect of
road disturbances and engine noise.

3.1. Pre-signal Processing

When the acceleration at points A, B and C is measured
and all measurements are transferred via wireless S/N,
there exist two main types of noise to be considered: one
is due to wireless networks and the other results from
both measurement noise and disturbances in a vehicle.
When wireless networks are used, packet loss is one of
most important issues to be considered. In general, the
packet loss is related to the sampling time. That is, the
faster the data are sampled, the more frequently packet
loss may occur. As listed in Table 1, when MICAz is used
as an S/N system, the experimental results show less than
5% packet loss if the sampling time is larger than 30 (ms)
(refer to Figure 3). Therefore, 30 (ms) was used as the
sampling time for the experiments described later.

The second main type of noise comes from system
disturbances as well as electrical measurement noise. For
instance, an engine running in a vehicle vibrates the
entire vehicle. Using Equation (9) and (10) and sensor
measurements in a stationary vehicle, we can calculate
both 4, and @,.. When the result in Figure 4(a) is
compared with that in Figure 4(b), it is clear how much
the noise characteristics are changed due to engine
vibration. For this reason, a moving average filter for the
pre-signal processing step is used due to its simplicity, as
follows (Smith, 1999):

1 m
v(k) " E x(k —i) (11)

i=0
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Figure 3. Sampling time vs. packet loss.
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Figure 4. Noise cancellation via a pre-signal-processing
filter in a stationary vehicle.

When seven data points are chosen for the moving
average (i.e., m=7), the measurement noise can be
cancelled out in the stationary vehicle, as shown in
Figure 4(a). Furthermore, Figure 4(b) shows that the
measurement noise can be also reduced via the pre-signal
processing step even in the presence of engine vibration.

Consequently, we can preprocess the acceleration at
each sensor node after filtering the measurement with a
30 (ms) sampling time using the moving average filter. In
practice, measured accelerations at the points A, B and C
are affected by road disturbances and noises coming from
the running engine during acceleration. In the next
section, a discrete Kalman filter is proposed to reduce this
noise and road disturbance.

3.2. Estimation of Pitch Angle

A pair of accelerometers can be used to measure and/or
estimate pitch rate without requiring a gyroscope. That is,
the relative acceleration information includes angular
velocity and acceleration of the vehicle. More specifi-
cally, when two accelerations at points B and C are
subtracted (refer to Equation (4) and Equation (5)), the

relative acceleration is written as

ek =l -3 2, 1 +67) 02

where [&B ~5C]~53 is the dot product of two vectors.
Since z . -z ~ 0, the angular acceleration of pitch can
be calculated as

é:¢5w-_[53“ac}‘b3 (13)
X f +X r
However, since the measured value of @ contains both

bias and noise in general, it can be written as (Ryu and
Gerdes, 2004)

P, =0+ Py, +wy (14)

Equation (14) can then be represented in state space form
as follows

6 01 o 6 0 0
. _ 3 . |
G 1=]0 0 —1) 6 |+ 1|R, +|1]w as)
Pbias 00 0 Pbias 0 0

=>x=Ax+ Bu, + B, wy

where, x= [0 6 Pb,.aS]T eR?, uy, =P, eR. Moreover,
the output is the pitch angle based on Equation (9) and
given as

y= [1 0 O]X =Cx= emeas +Vg (16)

The algorithm to estimate both pitch and pitch rate will
now be derived using a Kalman filter in the discrete time
domain. First of all, if Equation (15) is discretized for the
given sampling time, the system is of the form (Ryu and
Gerdes, 2004)

Hk+1] k)= 4,7(k | k)+ B,ulk) 17

where A=, B,= _[)Ate“Bd 7. When the discrete
Kalman filter is adapted, the algorithm is

Hk+1] k)= A5k | )+ B k)

18
£k+11 k+1)= £k +1) k)+ K{pk +1) -2k +1| k)} 1%

where K is calculated by solving a Riccati equation. It
should be noted that the proposed algorithm is designed
to estimate both pitch and pitch rate by combining 8,
with a kinematic relationship between acceleration mea-
surements at sensor nodes. If a dynamic model including
a suspension model is available, it can be incorporated
with the above algorithm and may result in better
performance. However, this dynamic model is dependent
on the type of vehicle, and its specific parameters are
generally confidential. Thus, the estimation algorithm,
which applies kinematics to sensor node locations, is
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proposed here despite some sacrifice of performance.

3.3. Estimation of Roll Angle

While the pitch angle estimation algorithm uses pitch
angular acceleration (since the sensor to measure pitch
rate is not available in a commercial vehicle), roll rate
sensors for roll stability control have been implemented
and their information is available via in-vehicle com-
munication. This roll rate information can thus be used
directly to estimate roll angle. The measurement for the
roll rate sensor can be described as

Qm= ¢+Qbias+w¢ (19)

Equation (19) can then be written in state space form as
follows

|:Q.bias} B Iio 0j|[Qbias jl + [Oilgm + lio}wyj (20)

and Equation (20) can be rewritten as

p=A4p+Bu,;+B,w,
q= [1 0]p = ¢meas TV

where p=[¢ Qbm]Te R?, u;=0,eR, and ¢q is the
output. While 6,,,, is obtained by Equation (10), the pitch
angle is not measurable. However, if the estimate of the
pitch angle from Equation (18) is used, the output
measurement can be described as

| ay,meas -y,
¢meas =S ~
gcosf

2y

where 6 is the estimate of @ using Equation (18). As is
done for the pitch estimation, roll can be estimated

Table 1. Hardware specifications for experiments.
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Figure 5. Schematics of indoor test platform.

sequentially using the discrete Kalman filter similarly
derived in Equation (18).

4. EXPERIMENTAL VALIDATION

To validate the proposed estimation algorithm, two test
platforms were used: the first is an indoor test platform in
which the estimated and measured values can be com-
pared under ideal environments. The second is a vehicle
test platform, that allows us to evaluate the estimation
algorithm in a real vehicle.

4.1. Validation via an Indoor Test

As shown in Figure 5, the indoor test platform consists of
a rigid bar with length of 1.2 m, an S/N system, a motor,
and sensors. A pair of sensor network nodes including a
2-axis MEMS accelerometer and a wireless communi-
cation module are placed on the end of the bar, and the
rotary encoder is placed on the center of the bar to
measure rotating angle. The indoor test platform is
intended to validate how well the proposed algorithm,
which is based on a pair of sensor network nodes,
estimates the rotating angle. Furthermore, an IMU is

Type Model Specification Manufacturer
Encoder MR Pulse per Revolution: 5376 maxon motor
type L (Pulse x Gear ratio)
Processor: ATMegal28L
S/N MICAz IEEE 802.15.4, 2.4 GHz Crossbow

RF Communication

Accelero-meter

ADXL202

Range: +2g
Sensitivity: 12.5%/g
Sensitivity Accuracy: +16%

Analog Device

MU

MTi

Resolution: 0.05° RMS
Static Accuracy: <0.5°
Dynamic Accuracy: 2° RMS

Xsense

GPS

VBOX

Update rate: 100 Hz
Velocity Accuracy: 0.028 m/s
16 bit analog output

Racelogic
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Figure 7. Estimated angle and corresponding error for 1
Hz excitation.

equipped to validate algorithm performance and is later
used as a 2-axis accelerometer to measure linear accele-
ration at the center of the rigid body in the road test using
a real vehicle. Table 1 shows a list of the hardware used
for the indoor and road tests.

Since it is reported that the natural frequency of
passenger vehicles is designed to be approximately 1(Hz)
to avoid road vibration resonance (Gillespie, 1992), two
different frequencies of excitations are used to validate
the proposed algorithm. Shown in Figure 6 are the time
responses of the estimated angle and angular rate when
the rod in the indoor test platform was excited with a
frequency of 0.5 (Hz) and a £4 (degree) amplitude with a
DC motor. It is clear that the performance both of the
pitch estimation algorithm based on wireless S/N and of

the IMU are quite similar and that their estimation errors
with respect to the encoder measurement are within 0.7
{degree). When an excitation frequency of 1 (Hz) and a
+4 (degree) amplitude were applied, the estimation errors
of the pitch estimation algorithm via S/N and the IMU
with respect to the encoder measurement were less than
0.8 (degree), as shown in Figure 7.

Since the performance of the estimation algorithm
relies on design parameters such as the number of data
points in Equation (11) and the Kalman filter gain (K) in
Equation (18), these parameters should be tuned for the
given environment. For example, the Kalman filter gain
K is obtained by solving a Riccati equation for the given
o(v)=0.0005. The noise characteristics can be determin-
ed by analyzing the signal from a sensor network node,
which includes measurement and communication noise.
Since additional disturbances due to a running engine
and/or irregular road surface are added to a vehicle
traveling on a real road, an analysis of noise characteri-
stics was performed for the road test and is described
later. Finally, the number of data points is related to
robustness and the rate of convergence. That is, as m
decreases, the rate of convergence improves while the
noise cancellation performance is degraded.

4.2. Feasibility via Road Tests

While the estimation algorithm was validated above in
the ideal environment, it is necessary to test its per-
formance in the real driving environment. Figure 8 shows
the test vehicle platform manufactured by Hyundai
Motors that includes S/N nodes and an IMU. The corre-
sponding dimensions of the sensor array are as follows

X5+x,=3.36m, y+y,=1.47m, and z,—z,=0

Furthermore, the design parameters for the experimental
tests are chosen as follows:

m=7
K, = [0.03 0.15 0.000061"
K, = [0.035 0.00035)"

Figure 8. Test vehicle platform.

To validate the proposed estimation algorithm, three
driving scenarios were developed to compare the perfor-
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mances of the proposed algorithm and the IMU in
estimating roll and pitch. The first case is that of a vehicle
operated with almost constant speed and without yaw
motion. This test attempts to show that both algorithms
work well under ideal driving conditions and can provide
estimates of pitch and roll angles for the given road
condition. The second and third scenarios incorporate
longitudinal acceleration and/or yaw motion respectively.
These field tests are designed to show the extent to which
the performance of the IMU may be degraded under the
given driving scenario and to what degree the proposed
algorithm can compensate for degradation based on the
results from the first driving test. It is noted that each
driving scenario was tested at least five times under the
same road conditions.

For the first driving scenario under the default road
conditions, the estimates of roll and pitch angles are
about 1.0 and —2.0 (degree) respectively as shown in
Figure 9. Both the proposed algorithm and the IMU show
similar performance. More precisely speaking, the IMU
gives a slightly better performance for the pitch
estimation because the pitch rate is available only to the
IMU. Although commercial vehicles are generally not
equipped with pitch rate sensors, it is expected that the
proposed algorithm can be improved once these sensors
are implemented in vehicles.
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Figure 10. Estimation of roll and pitch with longitudinal
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In the second scenario, the vehicle moved without yaw
motion but started to accelerate after 3 seconds as shown
in Figure 10(a). Both the proposed algorithm and the
IMU show similar performance in estimating roll angle
in this scenario because the yaw rate is approximately
zero during the test (refer to Figure 10(d)). However, the
IMU estimates the pitch angle with more than +10
(degree) of variation due to the longitudinal acceleration.
Based on the experimental results in Figure 9(c), the
pitch angle estimated by the IMU is physically unrealistic
for the terrain. In contrast, the proposed algorithm
estimates the pitch angle with less than +2.0 (degree) of
variation, which is similar to the result in Figure 9(c).

In the third scenario, the vehicle moved with yaw
motion and accelerated after 3 seconds, as shown in
Figures 11(a) and 11(b). As expected, the performance of
the IMU in estimating both pitch and roll is degraded in
both directions. That is, the estimated roll angle varies by

about +10 (degree) due to steering, and the estimated.

pitch angle changes between 10 and —20 (degree). Both
results show a high amount of estimation error. In
contrast, the estimated values generated by the proposed
algorithm show a much smaller amount of error. We
conclude therefore that the performance of the proposed
algorithm is better than that of the IMU in more diverse
driving environments such as those including longitudinal
acceleration and/or yaw motion.

5. CONCLUSION

This paper presented a new algorithm to estimate both
roll and pitch of a passenger vehicle using an accelero-
meter array and sensor networks. The proposed algorithm
can be divided into two procedures: the first is a pre-
signal processing step in which a moving average filter is
used to reduce measurement noise recorded by the
sensors and S/N, and the second is an estimation step in
which a discrete Kalman filter is used to combine an
angle measurement with angular acceleration or angular
velocity and to improve estimates of roll and pitch angle
against disturbances coming from the engine and road
surface. Finally, experimental tests were conducted for
validation in the framework of an indoor test platform

and a real vehicle. It was shown that the performance of
the proposed algorithm is better than that of an IMU in
realistic driving environments.
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