• 제목/요약/키워드: Angular

검색결과 3,552건 처리시간 0.035초

Fitts' Law for Angular Foot Movement in the Foot Tapping Task

  • Park, Jae-Eun;Myung, Ro-Hae
    • 대한인간공학회지
    • /
    • 제31권5호
    • /
    • pp.647-655
    • /
    • 2012
  • Objective: The purpose of this study was to confirm difference between angular foot movement time and existing foot Fitts' law predicting times, and to develop the angular foot Fitts' law in the foot tapping task. Background: Existing studies of foot Fitts' law focused on horizontal movement to predict the movement time. However, when driving a car, humans move their foot from the accelerator to the brake with a fixed heel. Therefore, we examined the experiment to measure angular foot movement time in reciprocal foot tapping task and compared to conventional foot Fitts' law predicting time. And, we developed the angular foot Fitts' law. Method: In this study, we compared the angular foot movement time in foot tapping task and the predicted time of four conventional linear foot Fitts' law models - Drury's foot Fitts' law, Drury's ballistic, Hoffmann's ballistic, Hoffmann's visually-controlled. 11 subjects participated in this experiment to get a movement time and three target degrees of 20, 40, and 60 were used. And, conventional models were calculated for the prediction time. To analyze the movement time, linear and arc distance between targets were used for variables of model. Finally, the angular foot Fitts' law was developed from experimental data. Results: The average movement times for each experiment were 412.2ms, 474.9ms, and 526.6ms for the 89mm, 172mm, and 253mm linear distance conditions. The results also showed significant differences in performance time between different angle level. However, all of conventional linear foot Fitts' laws ranged 135.6ms to 401.2ms. On the other hand, the angular foot Fitts' law predicted the angular movement time well. Conclusion: Conventional linear foot Fitts' laws were underestimated and have a limitation to predict the foot movement time in the real task related angular foot movement. Application: This study is useful when considering the human behavior of angular foot movement such as driving or foot input device.

테니스 포핸드 스트로크 동안 스탠스 조건에 따른 3차원 운동학적 분석 (3-D Kinematic Analysis According to Stance Patterns During Forehand Stroke in Tennis)

  • 최지영
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.105-115
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance. The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to open, close, and square stance patterns during forehand stroke in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head angle were defined. In conclusion, the first hypothesis, "In three dimensional maximum linear velocity of racket head would be significant difference among the stance patterns during forehand stroke in tennis" was rejected. The second hypothesis, "In three dimensional anatomical angular displacement of trunk would be significant difference among the stance patterns during forehand stroke in tennis" was rejected and the result showed that the internal-external rotation showed most important role among the three dimensional anatomical angular displacement of trunk The third hypothesis, "In three dimensional anatomical angular displacement of upperlimb would be significant difference among the stance patterns during forehand stroke in tennis" was rejected and the result showed that The three dimensional anatomical angular displacement of shoulder joint showed most important role in forehand stroke. Flexion-extension and internal-external rotation the open stance showed the largest angular displacement and is follwed by square stance and closed stance. The fourth hypothesis, "In three dimensional anatomical angular velocity of upperlimb would be significant difference among the stance patterns during forehand stroke in tennis" was rejected and the result showed that X-axis angular velocity and Z-axis angular velocity the square stance showed the largest angular velocity of the trunk and X-axis angular velocity and Y-axis angular velocity the closed stance showed the largest angular velocity of the shoulder joint.

고성능 HEVC 화면내 예측을 위한 Angular 모드 선택 알고리즘 (The Algorithm of Angular Mode Selection for High Performance HEVC Intra Prediction)

  • 박승용;류광기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.969-972
    • /
    • 2016
  • 본 논문에서는 고성능 HEVC intra prediction을 위한 Angular 모드 결정 알고리즘을 제안한다. HEVC의 intra prediction은 공간적 중복성을 제거하기 위해 사용된다. Intra prediction은 총 35개의 모드를 가지며, $64{\times}64$에서 $4{\times}4$ 블록 크기까지 35개의 모드를 수행 후 최적의 cost를 갖는 블록 크기 및 모드를 결정한다. Intra prediction은 각 블록 크기마다 35개의 모드를 수행하기 때문에 높은 연산량과 연산시간을 가지고 있다. 제안하는 Angular 모드 결정 알고리즘은 원본영상의 간단한 픽셀차이를 가지고 Angular 모드 1개를 선택한다. 선택된 Angular 모드와 Planar 모드, DC 모드로 intra prediction을 수행하여 최적의 cost를 갖는 모드를 결정한다. 성능 평가 지표는 BD-PSNR과 BD-Bitrate를 사용하였으며, 제안하는 알고리즘과 HM-16.9를 비교한 결과 BD-PSNR은 평균 0.035 증가하였고, BD-Bitrate는 평균 0.623 감소했다. 또한, 인코딩 타임은 약 6.905% 감소하였다.

  • PDF

비행체에서 유연성을 고려한 각속도 및 가속도정합 알고리즘 (Angular Rate and Acceleration Matching Algorithm in Aircraft in Consideration of Flexure)

  • 양철관;심덕선
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1126-1132
    • /
    • 2000
  • In this paper we propose an angular rate and acceleration matching method for initial transfer alignment in aircraft. The conventional angular rate and acceleration matching method performs compensation for the lever arm effects between the master and slave INS before initial alignment. However, the conventional method does not take the flexure angular acceleration into account and thus is not effective when the flexure angular acceleration is large. We propose a new angular rate and acceleration matching method to cope with the flexure acceleration between the master and slave INS and compare the results with those of the conventional method by simulation. The simulation results show that the proposed matching method is better than the conventional matching method in case of large flexure acceleration.

  • PDF

축약 각운동량 전개(Reduced Angular Momentum Expansion) 방법으로 해석한 전자 산란의 각 운동량 효과 (Angular Momentum Effect of Electron Scattering with Reduced Angular Momentum Expansion)

  • 강지훈
    • 한국자기학회지
    • /
    • 제18권1호
    • /
    • pp.36-38
    • /
    • 2008
  • 축약 각운동량 전개(Reduced Angular Momentum Expansion) 을 사용하여 산란 진폭을 계산하였고, 평면파 근사와 비교하였다. Wentzel-Kramers-Brillouin(WKB) 방법을 써서 각 운동량이 영이 아닌 초기 파동의 곡률 효과를 주는 항이 광전자 또는 오제(Auger) 전자의 원심 퍼텐셜 에너지(centrifugal potential energy) 항이 됨을 보였으며, 이항은 평면파 근사에서 각 운동량에 의존하는 유효 파수 벡터가 됨을 보였다. 산란 진폭과 각 운동량과 관계를 구체적으로 보였다.

GPS의 반송파 위상을 이용한 각속도 계산 알고리즘 (The computation algorithm for angular rate using GPS carrier phase)

  • 박준구;김진원;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1338-1341
    • /
    • 1997
  • In this paper, we propose angular rate computation algorithm using GPS carrier phase. A direct angylar rate masurement has not previously been available form GRS, although its availability is highly desirable for use in state feedback control. So we propose angular rate computationalgorithm which derive angular rate from the velocity of differentiated carrier phase og GPS. The proposed algorithm contains attitude determination using double-differentiated carrier phase and 2 baseline configuration whcih provide more practical applications than 3 baseline.

  • PDF

Solid Coupling의 설계 및 비틀림 각도 오차 특성 연구 (A Design of Solid Coupling and Study of Torsoinal Angular error Character)

  • 노창열;이응석;안동율
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.940-944
    • /
    • 2004
  • This is a thesis about the Solid Coupling Design and Torsional Angular Error Character. The solid coupling which is designed and made is a strong rigidity material. This is a experiment of Solid Coupling Torsional Error. The Angular Error, FEM and Circularity Measurement. Devices are Twist Friction Driver, Polygon, Autocollimator and Standard Encoder for Measurement. Coupling caused by elastic deformation causes angular error.

  • PDF

Dynamic Characteristics of Indeterminate Rotor Systems with Angular Contact Ball Bearings Subject to Axial and Radial Loads

  • Hong, Seong-Wook;Kang, Joong-Ok;Yung C. Shin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.61-71
    • /
    • 2002
  • This paper presents the dynamic analysis of indeterminate rotor systems with angular contact ball bearings subject to axial and radial loads. The reaction forces against applied radial loads significantly influence the dynamic characteristics of angular contact ball bearings. However, the reaction forces are hard to determine in the case of indeterminate rotor-bearing systems. To this end, this paper proposes a finite element model for indeterminate rotor systems with angular contact ball bearings. An improved bearing model is adopted which is originated from the Harris's bearing dynamic model. The bearing model is also extended to include centrifugal forces due to the ball and inner ring. This paper utilizes a new iterative algorithm for general, indeterminate rotor systems with angular contact ball bearings. This examples are provided to illustrate the dynamic characteristics of rotor systems with angular contact ball bearings subject to axial and radial loads. The experimental and numerical results prove that the proposed method is useful for the dynamic analysis of indeterminate rotor systems with angular contact ball bearings.

등속성 운동 시 각속도의 변화가 위팔두갈래근의 근력에 미치는 영향 (The Effects of Angular Velocity on Muscle strength of Biceps brachii)

  • 방현수;김진상
    • 대한물리의학회지
    • /
    • 제4권3호
    • /
    • pp.157-164
    • /
    • 2009
  • Purpose:The purpose of this study was to investigate the effects of angular velocity on muscle strength of biceps brachii. Methods:Subjects was classified into two groups, which were $60^{\circ}/sec$ angular velocity group(n=15) and $240^{\circ}/sec$ angular velocity group(n=15). Each group was applied to perform the isokinetic exercises on flexion muscle group for each 10 times in 3 set(3 days per a week for 2 weeks). Muscle strength was measured using peak torque of biceps brachii. Results:The results were as follows: The peak torque was significantly increased after $60^{\circ}/sec$ angular velocity isokinetic exercise application(p<.05), however, it was not significantly after $240^{\circ}/sec$ angular velocity isokinetic exercise application(p>.05). Conclusions:This study showed that $60^{\circ}/sec$ angular velocity isokinetic exercise application were effective treatment strategy on increase of muscle strength. Therefore, it could be considered as a treatment method in the athlete and patients with musculoskeletal disease.

  • PDF

각속도 성분들이 머리진동 측정치에 미치는 영향 (Effects of Angular Velocity Components on Head Vibration Measurements)

  • Park Yong Hwa;Cheung Wan Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권1E호
    • /
    • pp.7-15
    • /
    • 2005
  • This paper addresses issues encountered in measuring the general, 6-degree-of-freedom motion of a human head, A complete mathematical description for measuring the head motion using the six-accelerometer configured bite-bar is suggested, The description shows that the six-axis vibration cannot be completely obtained without the roll, pitch and yaw angular velocity components, A new method of estimating the three orthogonal (roll, pitch and yaw) angular velocities from the six acceleration measurements is introduced. The estimated angular velocities are shown to enable further quantitative error analysis in measuring the translational and angular accelerations at the head. To make this point clear, experimental results are also illustrated in this paper. They show that when the effects of angular velocities are neglected in the head vibration measurement the maximum percentage errors were observed to be more than $3 \%$ for the angular acceleration of the head and to be close to $5 \%$ for its translational acceleration, respectively. It means that the inclusion of all the angular velocity dependent acceleration components gives more accurate measurement of the head vibration.