• Title/Summary/Keyword: Angle of arrival

Search Result 198, Processing Time 0.033 seconds

Accuracy Improvement of the Estimated Angle Using Phase Averaging in Phase-Comparison Monopulse Algorithm (위상 비교 모노 펄스 알고리즘에서 위상평균법을 이용한 추정 각도 정확도 향상)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1212-1215
    • /
    • 2012
  • This study describes the accuracy improvement of the estimated angle using phase averaging in phase-comparison monopulse algorithm. In addition, to compensate the time-delay due to the phase averaging, we propose the time-delay compensation algorithm which uses the derivative of the estimated angle. These derivative is calculated by the curve fitting method. Using the real radar interferometer, we have verified that the phase averaging and time-delay compensation algorithms are effective in real-time signal processing application.

The Design of Reconstruction Filter for Order Tracking in Rotating Machinery (회전기기 진동의 차수 추종을 위한 재합성 필터의 설계)

  • 정승호;박영필
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • In the study, the design method of reconstruction filter is studied for synchronized sampling which is necessary for order tracking in rotating machinery. The original data sampled at constant intervals, using fixed anti- aliasing filters, is reconstructed by digital reconstruction filter and is resampled at new sampling times calculated by a suitable shaft angle encoder pulse arrival times in order to synchronize with shaft velocity. In addition to eliminating the tracking synthesizer and filters, this new method has no phase noise due to phase-locked loops.

  • PDF

On Performance Evaluation of MIMO Antennas through Channel Sounding (채널사운딩을 통한 다중안테나의 성능평가)

  • Kang, Young-Yun;Cho, Joon-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.12-13
    • /
    • 2008
  • In this paper, we propose a performance evaluation method for MIMO antennas through channel sounding. From measurement data, the complex channel gain, delay, angle of arrival, and angle of departure of each multipath are estimated. Using these estimates, the MIMO channel impulse response adopting various types of antennas are constructed by replacing the array response vectors, considering antenna patterns and correlation among antenna elements. Comparisons are made in terms of the metrics computed from the impulse responses.

  • PDF

Outlier Reduction using C-SCGP for Target Localization based on RSS/AOA in Wireless Sensor Networks (무선 센서 네트워크에서 C-SCGP를 이용한 RSS/AOA 이상치 제거 기반 표적 위치추정 기법)

  • Kang, SeYoung;Lee, Jaehoon;Song, JongIn;Chung, Wonzoo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we propose an outlier detection algorithm called C-SCGP to prevent the degradation of localization performance based on RSS (Received Signal Strength) and AOA (Angle of Arrival) in the presence of outliers in wireless sensor networks. Since the accuracy of target estimation can significantly deteriorate due to various cause of outliers such as malfunction of sensor, jamming, and severe noise, it is important to detect and filter out all outliers. The single cluster graph partitioning (SCGP) algorithm has been widely used to remove such outliers. The proposed continuous-SCGP (C-SCGP) algorithm overcomes the weakness of the SCGP that requires the threshold and computing probability of outliers, which are impratical in many applications. The results of numerical simulations show that the performance of C-SCGP without setting threshold and probability computation is the same performance of SCGP.

The Cost-effective Architecture Design of an Angle-of-Arrival Estimator in UWB Systems (UWB 시스템에서 입사각 추정기의 효율적인 하드웨어 구조 설계)

  • Lee, Seong-Joo;Han, Kwi-Beum
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.137-141
    • /
    • 2007
  • This paper proposes a cost-effective architecture design of an angle-of-arrival (AOA) estimator based on the multiple signal identification and classification (MUSIC) algerian in UWB systems adapting Multi-band OFDM (MB-OFDM) techniques with two-receive antennas. In the proposed method, by modifying the equations of algorithm in order to remove the high computational functions, the computation power can be significantly reduced without significant performance degradation. The proposed architecture is designed and verified by Verilog HDL, and implemented into 0.13um CMOS standard cell and Xilinx FPGA circuits for the estimation of hardware complexity and computation power. From the results of the implementations, we can find that the proposed circuits reduces the hardware complexity by about 43% and the estimated computation power by about 23%, respectively, compared to the architecture employing the original MUSIC algorithm.

Performance Analysis of Cascade AOA Estimator with Concentric Ring Array Antenna (동심원 배열 안테나를 적용한 캐스케이드 도래각 추정 성능분석)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.849-856
    • /
    • 2020
  • The Angle-of-Arrival(AOA) information for an array antenna receiver is one of the important factors for estimating the location of specific signals and detecting signals efficiently, in various situations. The AOA estimator in the satellite environment can rapidly calculate the AOA information in the wide area, utilizing a planar (grid, circular) array antenna mounted on the satellite. Since the satellite receiver has the limitation of the array antenna size, the concentric circular (ring) array (CCA or CRA) antenna structure with comparatively small size but with multiple antenna elements is more efficient than the uniform circular array (UCA) structure, for the satellite environment. In this paper, we introduce a cascade AOA estimation algorithm based on CRA, consisting of CAPON and Beamspace MUSIC. In addition, we provide computer simulation examples for verifying the estimation performance of the cascade AOA estimation algorithm based on CRA and compare it to the case of UCA.

Analysis of Computational Complexity for Cascade AOA Estimation Algorithm Based on Single and Double Rim Array Antennas (단일 및 이중 림 어레이 안테나 기반 캐스케이드 AOA 추정 알고리즘의 계산복잡도 분석)

  • Tae-Yun, Kim;Suk-Seung, Hwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1055-1062
    • /
    • 2022
  • In order to use the Massive MIMO (Multi Input Multi Output) technology using the massive array antenna, it is essential to know the angle of arrival (AOA) of the signal. When using a massive array antenna, the existing AOA estimation algorithm has excellent estimation performance, but also has a disadvantage in that computational complexity increases in proportion to the number of antenna elements. To solve this problem, a cascade AOA estimation algorithm has been proposed and the performance of a single-shaped (non)massive array antenna has been proven through a number of papers. However, the computational complexity of the cascade AOA estimation algorithm to which single and double rim array antennas are applied has not been compared. In this paper, we compare and analyze the computational complexity for AOA estimation when single and double rim array antennas are applied to the cascade AOA estimation algorithm.

Output SINR Analysis of GPS Adaptive Interference Canceler Based on Modified Despreader (변형된 역확산기 기반의 GPS 적응 간섭제거기의 출력 SINR 해석)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.195-202
    • /
    • 2014
  • The Global Positioning System (GPS), which has various military and commercial applications, is designed to estimate the location of the specific user or object. In order to accurately estimate the location, GPS requires at least four satellite signals. The GPS receiver operates on extremely low signal-to-noise ratio (SNR) environment and it may suffer from various interference signals with the extremely high power. In this paper, we introduce a blind adaptive receiver based on the modified despreader, which suppress interference signals and detect GPS signals of interest without requiring explicit angle-of-arrival (AOA) information. We, also, provide the mathematical analysis for the signal-to-interference and noise ratio (SINR) of the modified despeader beamformer output. A representative computer simulation example is presented to illustrate the interference suppression performance of the considered GPS receiver and mathematical analysis of the SINR.

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.

Performance Evaluation of Satellite System Based on Transmission Beamformer (송신 빔형성기 기반의 위성 시스템 구조 성능평가)

  • Mun, Ji-Youn;Hwang, Myeong-Hwan;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.713-720
    • /
    • 2018
  • The Signal Intelligence (SIGINT) system based on Angle-of-Arrival(AOA) estimation, interference suppression, and transmission beamforming techniques is a cutting edge technology for efficiently collecting various signal information. In this paper, we present the efficient structure of a satellite system consisted of an AOA estimator, an adaptive beamformer, a signal processing and D/B unit, and a transmission beamformer, for collecting signal information. For accurately estimating AOAs of various signals, efficiently suppressing interference or jamming signals, and efficiently transmitting the collected information or data, we employ Multiple Signal Classification (MUSIC), Minimum Variance Distortionless Response (MVDR), and Minimum Mean Square Error (MMSE) algorithms, respectively. Also, we evaluate and analysis the performance of the presented satellite system through the computer simulation.