• Title/Summary/Keyword: Anchorage Capacity

Search Result 140, Processing Time 0.021 seconds

Capacity Detailing of Members to Ensure Elastic Behavior (보-기등 접합부의 탄성거동을 위한 내진역량상세)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.119-126
    • /
    • 1999
  • The objective of this task is to develop seismic design and capacity detailing recommendations for all portions of bridge piers that do not participate as primary energy dissipation elements. particular emphasis is given to the design requirements of cap beams and their connections of multi-column bridge pier bents. By prestressing the joints it is possible to ensure the joints remain elastic. Prestress enhances the bond and anchorage of the longitudinal column bars and also minimizes or avoids diagonal shear cracking in the joints.

  • PDF

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

A Study on Shear Capacity and Behavior of Large Sized Concrete Anchorage System (대형 콘크리트 앵커시스템의 전단성능 및 거동특성에 관한 연구)

  • Kim, Kang Sik;Shin, Sung Woo;Lee, Kwang Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this study, 24 prototype specimens were tested to find out the shear behavior and strength of large anchorage system exceeding 50mm(2") in anchor bolt diameter($d_0$) and 635mm(25") in effective embedment depth($h_{ef}$) not addressed by ACI349-06 Appendix B. Test variables are anchor bolt diameter($d_0$ = 63.5, 76.2, 88.9mm), effective embedment depth($h_{ef}$=635, 762mm), and edge distance($c_1$=381, 508, 762mm). Concrete compressive strength is constant($f_{ck}$=38MPa). Test results ($V_{test}$) were overestimated by $V_{aci06}$(shear strength by ACI 349-06) and $V_{ccd}$(shear strength by CCD method). In large anchorage system exceeding 50mm(2") of anchor bolt diameter($d_0$) and 635mm(25") of anchor bolt effective embedment depth($h_{ef}$), the bolt diameter variation and effective embedment depth($h_{ef}$) has no influence on the shear strenth, But, according to the analysis results of the feature ratio on edge distance($c_1$) and anchor bolt diameter, the feature ratio become smaller, which means anchor bolt diameter is bigger, predicted ratio of test results and predicted equation is larger. It was found that anchor bolt diameter is immediate cause of deterioration in the shear capacity of large anchorage system. To improve and extend the validity of current design recommendations further theoretical and numerical work is needed.

An Experimental Study of Reinforced Concrete Beams with Closely-Spaced Headed Bars

  • Lam, Kah Mun;Kim, Woo-Suk;Van Zandt, Michael;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The use of headed bars as opposed to standard 90- or 180-degree hooked bars in beam ends, beam-column joints or other steel congested areas for anchorage and bond has become more favorable due to the fact that steel congestion is often created by large bend diameters or crossties. This research mainly focuses on evaluating the code provisions regarding the use of headed bars. Nine simply supported rectangular concrete beams with headed longitudinal reinforcement were tested under a four-point monotonic loading system. The design clear spacing, which varies from 1.5 to 4.25 times the bar diameter, was the only parameter for the experimental investigation. The test results showed that the closely-spaced headed bars were capable of developing to full yield strength without any severe brittle concrete breakout cone or pullout failure. Bond along the bar was not sufficient due to the early loss of concrete integrity. However, the headed bars were effective for anchorage with no excessive moment capacity reduction. This implies that the clear spacing of about 2 times the bar diameter for headed bars may be reasonable to ensure the development of specified yield strength of headed bars and corresponding member design strength.

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

An investigation of anchorage to the edge of steel plates bonded to RC structures

  • Kara, M.E.;Firat, F.K.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • This paper presents the results of an experimental study investigating the effects of anchorage systems used in externally bonded steel plates on the strength and ductility of reinforced concrete structures. In the literature, diagonal steel plates bonded to frames were designed to be more flexible than the connections to eliminate the possible effect of the connection flexibility. However, to better evaluate the performance of the strengthened structures, the strength and behavior of connections should also be considered. The purpose of this study was to experimentally investigate the effects of different connection types of steel plates bonded to the frame using anchors on the strengthened RC structures. For this purpose, eleven specimens were designed to simulate the interior and exterior connection behavior. Two of these were used as the control beams and remaining nine for the investigation of the functionality of the end steel plates. Experimental results show that the load carrying capacity of the strengthened beams is directly related to the connection types of the steel plates. For the interior connections, L-shaped end plates that were strengthened using steel anchors must have adequate stiffness to prevent its shape. While, for the exterior connections, the connection with three anchors carried more load than the other exterior connections.

Earthwork Volume Calculation of Anchorage Underground Capacity Using Laser Scanner (레이저스캐너를 이용한 앵커리지 지하공동의 토공량 산정)

  • Choi, Seok-Keun;Kim, Dong-Yeun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.21-27
    • /
    • 2010
  • When the capacity of underground caverns' structures is measured, a general surveying is difficult to decide an accurate section of irregular shape and a photographic surveying has problems on picture acquisition due to underground dusts, noise and lighting conditions, etc. The laser scanner system is being much used for 3-dimensional modeling such as topography, planimetric features and structures, etc. without a target by measuring arriving time of a laser pulse reflected after scanning the laser pulse and calculating space coordinates of the reflection position. Accordingly, the present research carried out section and earthwork volume measurement of a tunnel by using a laser scanner in underground anchorage excavation work that a bridge construction is being executed.

Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top

  • Zhou, Chaoyang;Ren, Da;Cheng, Xiaonian
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.135-143
    • /
    • 2017
  • To upgrade shear performance of reinforced concrete (RC) beams, and particularly of the segments under negative moment within continuous T-section beams, a series of original schemes has been proposed using carbon fibre-reinforced polymer (CFRP) U-shaped strips for shear-strengthening. The current work focuses on one of them, in which CFRP U-strips are wound around steel bars against the top of the flange of a T-beam and then spliced on its bottom face in addition to being bonded onto its sides. The test results showed that the proposed scheme successfully provided reliable anchorage for U-strips and prevented premature onset of shear failure due to FRP debonding. The governing shear mode of failure changed from peeling of CFRP to its fracture or crushing of concrete. The strengthened specimens displayed an average increase of about 60% in shear capacity over the unstrengthened control one. The specimen with a relatively high ratio and uniform distribution of CFRP reinforcement had a maximum increase of nearly 75% in strength as well as significantly improved ductility. The formulas by various codes or guidelines exhibited different accuracy in estimating FRP contribution to shear resistance of the segments that are subjected to negative moment and strengthened with well-anchored FRP U-strips within continuous T-beams. Further investigation is necessary to find a suitable approach to predicting load-carrying capacity of continuous beams shear strengthened in this way.

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S.;Biswal, K.C.
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.