• 제목/요약/키워드: Anchor distribution

검색결과 100건 처리시간 0.025초

제주 해양환경에 적합한 부유식 해상풍력발전기 계류선 설계 (Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju)

  • 정준모;김형준;전기영
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.300-310
    • /
    • 2014
  • This paper presents a mooring design procedure of a floating offshore wind turbine. The environment data of south offshore area of Jeju collected from Korea Hydrographic and Oceanographic Administration(KHOA) are used for hydrodynamic analyses as environmental conditions. We considered a semi-submersible type floating wind turbine based on Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform and National Renewable Energy Laboratory(NREL) 5 MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nomial sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50-year design life, respectively, longterm predictions of breaking strength and fatigue are proposed.

Fast Encoder Design for Multi-view Video

  • Zhao, Fan;Liao, Kaiyang;Zhang, Erhu;Qu, Fangying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2464-2479
    • /
    • 2014
  • Multi-view video coding is an international encoding standard that attains good performance by fully utilizing temporal and inter-view correlations. However, it suffers from high computational complexity. This paper presents a fast encoder design to reduce the level of complexity. First, when the temporal correlation of a group of pictures is sufficiently strong, macroblock-based inter-view prediction is not employed for the non-anchor pictures of B-views. Second, when the disparity between two adjacent views is above some threshold, frame-based inter-view prediction is disabled. Third, inter-view prediction is not performed on boundary macroblocks in the auxiliary views, because the references for these blocks may not exist in neighboring views. Fourth, finer partitions of inter-view prediction are cancelled for macroblocks in static image areas. Finally, when estimating the disparity of a macroblock, the search range is adjusted according to the mode size distribution of the neighboring view. Compared with reference software, these techniques produce an average time reduction of 83.65%, while the bit-rate increase and peak signal-to-noise ratio loss are less than 0.54% and 0.05dB, respectively.

일점계류된 선박의 불안정 거동 방지에 관한 연구 (A Study on the Control of the Slew Motion of a Single Point Moored Ship)

  • 이승건;강동훈
    • 한국항해항만학회지
    • /
    • 제27권2호
    • /
    • pp.193-198
    • /
    • 2003
  • 일점계류된 선박의 외력에 의한 불안정 거동을 경감시키는 방법에 대하여 검토하였다. 계류된 선박의 수치계산 시뮬레이션을 위해 조종운동방정식을 사용하였고, 선박에 가해지는 외력으로는 풍력과 파강제력이 고려되었다. 파강제력은 3차원특이점분포법에서 얻어진 주파수전달함수로부터 시간영역해석법을 적용하였고, 풍력은 OCIMF(1994)에서 제시한 값을 사용하였다. 계류된 선박의 안전대책으로 바우스러스터를 이용한 제어방법, 두 번째 묘를 이용한 굴레(Birdle)를 씌우는 묘박법이 검토되었다.

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

제어봉에 의한 원형실린더 주위의 압력분포에 관한 수치해석 (Numerical Analysis on the Pressure Distributions around a Circular Cylinder by Control Rods)

  • 김옥석;이경우;조대환
    • 한국항해항만학회지
    • /
    • 제31권6호
    • /
    • pp.485-490
    • /
    • 2007
  • 부표시스템 침수체의 주요형상인 실린더에 원형 제어봉을 부착하여 2차원 단면의 유동특성에 대해서 수치해석을 수행하였다. 유속을 0.1m/s에서 0.5m/s로 변화시키면서 부표시스템 주위의 유동현상을 파악하고, 부표시스템의 효과적인 유동제어를 위해 실린더 (D=50mm)에 제어봉의 직경을 0.1D 에서 0.5D까지 부착하여 조류에 의한 압력분포를 조사하였다. 유동장내의 속도분포는 PIV 계측기법 중 2프레림 입자추적 법을 사용하여 수치해석의 정도를 높이고자 0.3m/s에서 비교 평가하였다. 실린더 주위의 압력분포는 0.2D의 제어봉을 부착하였을 경우, 유속의 변화에 관계없이 가장 양호한 경향을 보이는 것을 알 수 있었다.

Displacement and stress distribution of the maxillofacial complex during maxillary protraction using palatal plates: A three-dimensional finite element analysis

  • Eom, Jusuk;Bayome, Mohamed;Park, Jae Hyun;Lim, Hee Jin;Kook, Yoon-Ah;Han, Seong Ho
    • 대한치과교정학회지
    • /
    • 제48권5호
    • /
    • pp.304-315
    • /
    • 2018
  • Objective: The purpose of this study was to analyze initial displacement and stress distribution of the maxillofacial complex during dentoskeletal maxillary protraction with various appliance designs placed on the palatal region by using three-dimensional finite element analysis. Methods: Six models of maxillary protraction were developed: conventional facemask (Type A), facemask with dentoskeletal hybrid anchorage (Type B), facemask with a palatal plate (Type C), intraoral traction using a Class III palatal plate (Type D), facemask with a palatal plate combined with rapid maxillary expansion (RME; Type E), and Class III palatal plate intraoral traction with RME (Type F). In Types A, B, C, and D, maxillary protraction alone was performed, whereas in Types E and F, transverse expansion was performed simultaneously with maxillary protraction. Results: Type C displayed the greatest amount of anterior dentoskeletal displacement in the sagittal plane. Types A and B resulted in similar amounts of anterior displacement of all the maxillofacial landmarks. Type D showed little movement, but Type E with expansion and the palatal plate displayed a larger range of movement of the maxillofacial landmarks in all directions. Conclusions: The palatal plate served as an effective skeletal anchor for use with the facemask in maxillary protraction. In contrast, the intraoral use of Class III palatal plates showed minimal skeletal and dental effects in maxillary protraction. In addition, palatal expansion with the protraction force showed minimal effect on the forward movement of the maxillary complex.

제어봉을 부착한 원형실린더 주위 유동제어에 관한 연구 (A Study on the Flow Control around a Circular Cylinder by Control rods)

  • 김옥석;이경우;조대환
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2007년도 춘계학술발표회
    • /
    • pp.169-174
    • /
    • 2007
  • 부표시스템 침수체의 주요형상인 원형실린더에 제어봉을 부착하여 2차원 단면의 유동특성에 대해서 수치해석을 수행하였다. 유속을 0.1m/s에서 0.5m/s로 변화시키면서 부표시스템 주위의 유동현상을 파악하고 부표시스템의 효과적인 유통제어를 위해 실린더 (D=50mm)에 제어봉의 직경을 0.1D 에서 O.5D 까지 부착하여 조류에 의한 영향을 조사하였다. 유동장내의 속도분포는 PIV계측기법 중 2 프레림 입자추적법을 사용하여 수치해석의 정도를 높이고자 0.3m/s에서 비교 평가하였다. 실린더 주위의 압력분포는 0.2D 의 제어봉을 부착하였을 경우, 유속의 변화에 관계없이 가장 양호한 경향을 보이는 것을 알 수 있었다.

  • PDF

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.