• Title/Summary/Keyword: Analytical sensitivity

Search Result 600, Processing Time 0.025 seconds

Adjoint Variable Method combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.418-423
    • /
    • 2008
  • Among various sensitivity evaluation techniques, semi-analytical method is quite popular since this method is more advantageous than analytical method and global finite difference method. However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, the adjoint variable method combined with complex variable is proposed to obtain the shape and size sensitivity for structural optimization. The complex variable can present accurate results regardless of the perturbation size as well as easy to be implemented. Through a few numerical examples of the static problem for the structural sensitivity, the efficiency and reliability of the adjoint variable method combined with complex variable is demonstrated.

  • PDF

Finite element response sensitivity analysis of continuous steel-concrete composite girders

  • Zona, Alessandro;Barbato, Michele;Conte, Joel P.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.183-202
    • /
    • 2006
  • The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the interlayer slip between these two components. This paper focuses on a procedure for response sensitivity analysis using state-of-the-art finite elements for composite beams with deformable shear connection. Monotonic and cyclic loading cases are considered. Realistic cyclic uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM); its analytical derivation and computer implementation are validated through Forward Finite Difference (FFD) analysis. Sensitivity analysis results are used to gain insight into the effect and relative importance of the various material parameters in regards to the nonlinear monotonic and cyclic response of continuous composite beams, which are commonly used in bridge construction.

Recent Advances in a Microfluidic Paper-based Analytical Devices and its Point of Care Testing Applications (종이기반 미세유체 분석소자를 활용한 현장검사 기술과 그 응용)

  • Yoo, Yong Kyoung;Kim, Cheonjung;Lee, Junwoo;Lee, Jeong Hoon
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.293-301
    • /
    • 2018
  • Paper-based analytical devices (${\mu}PAD$) are highly advantageous for portable diagnostic systems owing to their low costs and ease of use. ${\mu}PADs$ are considered as the best candidates for realizing the World Health Organization (WHO) ASSURED criteria: affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users. However, they have several limitations such as low sensitivity and accuracy. This article reports a mini review for a micro-fluidic paper-based analytical devices (${\mu}PAD$), especially for addressing low sensitivity and accuracy issues.

Analytical Method to Analyze the Effect of Tolerance on the Modal Characteristic of Multi-body Systems in Dynamic Equilibrium (동적 평형위치에 있는 다물체계의 모드특성에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.579-586
    • /
    • 2007
  • Analytical method to analyze the effect of tolerance on the modal characteristic of multi-body systems in dynamic equilibrium position is suggested in this paper. Monte-Carlo method is conventionally employed to perform the tolerance analysis. However, Monte-Carlo method spends too much time for analysis and has a greater or less accuracy depending on sample condition. To resolve these problems, an analytical method is suggested in this paper. Sensitivity equations for damped natural frequencies and the transfer function are derived at the dynamic equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivities of damped natural frequencies and the transfer function can be calculated.

A REFINED SEMI-ANALYTIC DESIGN SENSITIVITIES BASED ON MODE DECOMPOSITION AND NEUMANN SERIES IN REDUCED SYSTEM (축소모델에서 강체모드 분리와 급수전개를 통한 준해석적 민감도 계산 방법)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.491-496
    • /
    • 2003
  • In sensitivity analysis, semi-analytical method(SAM) reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Recently such errors of SAM resulted by the finite difference scheme have been improved by the separation of rigid body mode. But the eigenvalue should be obtained first before the sensitivity analysis is performed and it takes much time in the case that large system is considered. In the present study, by constructing a reduced one from the original system, iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The sensitivity analysis is performed by the eigenvector acquired from the reduced system. The error of SAM caused by difference scheme is alleviated by Von Neumann series approximation.

  • PDF

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

The Senstivitiy Analysis and Optimiaztion for the Development of the SMD Performance (표면 실장기(SMD) 성능 개선을 위한 민감도 해석 및 최적화)

  • Cha, In-Hyuk;Han, Chang-Soo;Kim, Jung-Duck
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.568-573
    • /
    • 1996
  • In this paper, A design strategy of the Surface Mounting Device for accurate and better performance is studied. Analytical Modeling. Sensitivity analysis and optimization are being conducted. The ANSYS software and experimental method are used for verification of the analytical equations withboundary conditons. Through the sensitivity analysis, the most dominant design parameters can be detected. The optimum design parameters for performing given performing given perfomances are selected by using the optimization algorithm. The design tool based on the design strategy for the analysis, modeling and optimization will be useful for a re-design and better perofrmance of the SMD.

  • PDF

DESIGN SENSITIVITY ANALYSIS FOR MULTIBODY SYSTEMS (다물체 시스템의 민감도 해석)

  • Lee, Jong-Nyun;Park, Soo-Hong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.378-382
    • /
    • 1996
  • This paper presents a 'mixed' method for performing the sensitivity analysis for multibody dynamics. The mixed method uses both the analytical derivation and the numerical evaluation, in which premitive derivations rely on the analytical process and their associated individual terms are evaluated by the numerical precess. Therefore, this method can eliminate difficulty in dervation of the direct differentiation. Furthermore, by using the joint coordinate formulation for the equations of motion, compulational efficiencyand numerical accuracy are achieved.

  • PDF

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, Joo-Ho;Kwak, Hyun-Gu;Grandhi, R.V.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.

Analytical Performance Evaluation of Pneumatic Nebulizers and Comparison of Their Characteristics (가압분무기의 성능 평가와 특성 비교)

  • Park, Chang Joon;Han, Myung Sub;Song, Sun Jin;Lee, Dong Soo
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.120-126
    • /
    • 2002
  • The analytical performance of four commercially-available pneumatic nebulizers(Meinhard, Cross-flow, Babington, ESI PFA) was evaluated using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and ICP-mass spectrometry (ICP-MS) instruments. The performance of an inert concentric nebulizer and a modified conespray nebulizer, made in Korea Research Institute of Standards and Science (KRISS), is compared with that of the four commercial nebulizers. Variation of sample introduction efficiency was investigated as carrier argon pressure and sample uptake rate were changed. Variation of sensitivity, signal stability, blank intensity and oxide/hydride ratios were also studied when the nebulizers were connected to the ICP-MS and ICP-AES instruments. It was found that good analytical result such as high sensitivity, low blank, stable signal and so on can be obtained with judicious selection of the nebulizer depending on the type of sample, sample amount, type of analytical instrument and analyte.