• Title/Summary/Keyword: Analytical equation

Search Result 1,227, Processing Time 0.023 seconds

AN APPROXIMATE ANALYTICAL SOLUTION OF A NONLINEAR HYDRO-THERMO COUPLED DIFFUSION EQUATION

  • Lee, Jeong-woo;Cho, Won-cheol
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.187-196
    • /
    • 2001
  • An approximate analytical solution of a nonlinear hydro-thermo coupled diffusion equation is derived using the dimensionless form of the equation and transformation method. To derive an analytical solution, it is drastically assumed that the product of first order derivatives in the non-dimensionalized governing equation has little influence on the solution of heat and moisture behavior problem. The validity of this drastic assumption is demonstrated. Some numerical simulation is performed to investigate the applicability of a derived approximate analytical solution. The results show a good agreement between analytical and numerical solutions. The proposed solution may provide a useful tool in the verification process of the numerical models. Also, the solution can be used for the analysis of one-dimensional coupled heat and moisture movements in unsaturated porous media.

  • PDF

Analysis of Anomalous Subthreshold Characteristics in Ligtly-Doped Asymmetric Double-Gate MOSFETs (Asymmetric Double-Gate MOSFET의 Subthreshold 특성 분석)

  • 이혜림;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.379-383
    • /
    • 2003
  • The subthreshold characteristics of Double-Gate MOSFETs are analyzed for various Tsi. In the lightly-doped asymmetric device, it is found that the subthreshold current dramatically increases as the Tsi increases and this phenomenon is due to the linear distribution of potential in the channel region with low depletion-charge. Further, we derived an analytical equation which can explain this phenomenon and verified the accuracy of analytical equation by comparing with the result of device simulation.

근적외 분광분석법을 이용한 버어리종 잎담배 화학성분 분석

  • 김용옥;장기철;이경구
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 1999
  • This study was carried out to analyze chemical components in burley tobacco using near infrared spectroscopy(NIRS). Samples were collected in '96 and '97 crop year. Calibration equations were developed by modified partial least square. The standard error performance(SEP) of '96 crop year samples between NIRS and standard laboratory analysis were 0.25% for nicotine, 0.18% for total nitrogen, 0.59% for crude ash, 0.32% for ether extracts, and 0.14% for chlorine, respectively. The analytical results of '97 crop year samples were similar to those of '96 crop year samples. The analytical result of '97 crop year samples analyzed by '96 calibration equation was more inaccurate than that of '96 crop year samples. The SEP of '96 or '97 crop year samples applying calibration equation derived from '96 plus '97 crop year samples was similar to that of '96 or '97 crop year samples analyzed by '96 or '97 calibration equation, respectively. The SEP of '97 crop year samples analyzed by calibration equation derived from '96 plus '97 crop year samples was more accurate than that of '97 crop year samples analyzed by '96 calibration equation. To improve the analytical inaccuracy caused by the difference of crop year between calibration and prediction samples, we need to include the prediction sample spectra which were different from calibration sample spectra in recalibration sample spectra, and then develop recalibration equation. The NIRS can apply to analyze burley leaf tobacco, leaf process or tobacco manufacturing process which were required the rapid analytical result.

  • PDF

An Analytical Model of Corona Discharge Plasmas in Coaxial Cylindrical Reactor (동축 원통형 코로나 방전 플라즈마의 해석적 모델)

  • 고욱희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.157-161
    • /
    • 2004
  • We present a simple analytical expression of plasma density by making use of the electron density equation to study the dynamic behavior of the corona discharge plasma. It assumes that a specified voltage profile is fed through the inner conductor of the reactor chamber consisting of two coaxial conducting cylinders. The analytical description is based on the electron continuity equation with ionization and attachment by electrons. It is found that the electron density profile calculated between two coaxial cylindrical electrodes depends very sensitively on the Profile of applied voltage. The analytical expression of plasma density and its generation will provide important scaling laws in the corona discharge plasma.

Mathematical Model for Analysis on the Behaviours of Submerged Mound Constructed by the Dredged Materials (수중둔덕의 거동특성 해석을 위한 수학적 모형)

  • Choi, Han-kyu;Lee, Oh-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.391-402
    • /
    • 1999
  • The numerical model predicting the behaviours of submerged mound constructed by dredged material is developed in this paper. The model is based on the Bailard's sediment transport formula, Stokes' second-order wave theory and the sediment balance equation. Nonlinear partial differential equation which is the same form as convection-dispersion equation which represents change of bed section can be obtained by substituting sediment transport equation for equation of sediment conservation. By this process, the analytical solution by which the characteristic of the behaviours of submerged mound can be estimated is derived by probably combining the convention coefficient and the dispersion coefficient governing the behaviours of submerged mound and the probability density function representing the wave characteristics. The validity of the analytical solution is verified by comparing the analytical solution which is assumed to estimate the movement rate submerged mound by bed-load with the field data of the past and its characteristic is analyzed quantitatively by obtaining the mean of the dispersion coefficient representing the extent of the decrease rate of the submerged mound height.

  • PDF

Analytical method for the out-of-plane buckling of the jib system with middle strut

  • Wang, T.F.;Lu, N.L.;Lan, P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.963-980
    • /
    • 2016
  • The jib system with middle strut is widely used to achieve the large arm length in the large scale tower crane and the deployability in the mobile construction crane. In this paper, an analytical solution for the out-of-plane buckling of the jib system with middle strut is proposed. To obtain the analytical expression of the buckling characteristic equation, the method of differential equation was adopted by establishing the bending and torsional differential equation of the jib system under the instability critical state. Compared with the numerical solutions of the finite element software ANSYS, the analytical results in this work agree well with them. Therefore, the correctness of the results in this work can be confirmed. Then the influences of the lateral stiffness of the cable fixed joint, the dip angle of the strut, the inertia moment of the strut, and the horizontal position of the cable fixed joint on the out-of-plane buckling behavior of the jib system were investigated.

Transformation of Long Waves Propagating over Trench (트렌치 위를 통과하는 장파의 변형)

  • Jung, Tae-Hwa;Suh, Kyung-Duck;Cho, Yong-Sik;Park, Sung-Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2007
  • An analytical solution for long waves propagating over an asymmetric trench is derived. The water depth inside the trench varies in proportion to a power of distance from the center of the trench. The mild-slope equation, governing equation, is transformed into second order ordinary differential equation with variable coefficients by using the long wave assumption and then the analytical solution is obtained by using the power series technique. The analytical solution is confirmed by comparison with the numerical solution. After calculating the analytical solution under various conditions, the results are analyzed.

An analytical solution for finitely long hollow cylinder subjected to torsional impact

  • Wang, X.;Wang, X.Y.;Hao, W.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.281-295
    • /
    • 2005
  • An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.