• 제목/요약/키워드: Analytical and numerical method

검색결과 1,321건 처리시간 0.038초

준해석적 비선형 설계민감도를 위한 개선된 변위하중법 (Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

준해석 설계민감도를 위한 변위하중법 (Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis)

  • 유정훈;김흥석;이태희
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

준해석적 비선형 설계민감도를 위한 보정변위하중법 (Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

해안지하수개발 최적화수치모델과 해석해의 비교연구 (Comparison of a Groundwater Simulation-Optimization Numerical Model with the Analytical Solutions)

  • 시뢰;최뢰;이찬종;박남식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.905-908
    • /
    • 2009
  • In the management of groundwater in coastal areas, saltwater intrusion associated with extensive groundwater pumping, is an important problem. The groundwater optimization model is an advanced method to study the aquifer and decide the optimal pumping rates or optimal well locations. Cheng and Park gave the analytical solutions to the optimization problems basing on Strack's analytical solution. However, the analytical solutions have some limitations of the property of aquifer, boundary conditions, and so on. A simulation-optimization numerical method presented in this study can deal with non-homogenous aquifers and various complex boundary conditions. This simulation-optimization model includes the sharp interface solution which solves the same governing equation with Strack's analytical solution, therefore, the freshwater head and saltwater thickness should be in the same conditions, that can lead to the comparable results in optimal pumping rates and optimal well locations for both of the solutions. It is noticed that the analytical solutions can only be applied on the infinite domain aquifer, while it is impossible to get a numerical model with infinite domain. To compare the numerical model with the analytical solutions, calculation of the equivalent boundary flux was planted into the numerical model so that the numerical model can have the same conditions in steady state with analytical solutions.

  • PDF

Mixed analytical/numerical method applied to the low Reynolds number k-epsilon turbulence model

  • Du T.;Wu Z.N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.272-275
    • /
    • 2003
  • A mixed analytical/numerical method is developed here to solve the low Reynolds number kepsilon turbulence model. In this method the advection-diffusion part is solved numerically, while the source terms are split into two parts: one part is solved analytically and the next is solved numerically.

  • PDF

A photo-thermal interaction in semi-conductor medium with cylindrical cavity by analytical and numerical methods

  • Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.267-273
    • /
    • 2021
  • In this work, we compare the analytical solutions with the numerical solutions for photothermal interactions in semiconductor medium containing cylindrical cavity. This paper is devoted to a study of the photothermal interactions in semiconductor medium in the context of the coupled photo-thermal model. The basic equations are formulated in the domain of Laplace transform and the eigenvalue scheme are used to get the analytical solutions. The numerical solution is obtained by using the implicit finite difference method (IFDM). A comparison between the analytical solution and the numerical solutions are obtained. It is found that the implicit finite difference method (IFDM) is applicable, simple and efficient for such problems.

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method

  • Ullah, Salamat;Zhang, Jinghui;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.491-502
    • /
    • 2019
  • This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.

Analytical and numerical simulation on charging behavior of no-insulation REBCO pancake coil

  • Quach, Huu Luong;Kim, Ji Hyung;Chae, Yoon Seok;Moon, Jae Hyung;Ko, Jung Hyup;Kim, Hyung-Wook;Kim, Seog-Whan;Jo, Young-Sik;Kim, Ho Min
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.16-19
    • /
    • 2018
  • This paper presents analytical and numerical simulation approaches on charging characteristics of no-insulation (NI) REBCO pancake coil by using the equivalent circuit model to estimate magnetic performance response in the coil. The analytical methods provide closed form or definite solution in the form of complete mathematical expressions but they are hard to solve the complex problems. Numerical methods have become popular with the development of the computing capabilities to solve the problems which are impossible or very hard to solve analytically. First of all, the equivalent circuit model are proposed to develop the simulation code for both analytical and numerical method. The charging test was performed under critical current to obtain magnetic field induced and terminal voltage through the radial as well as spiral current paths within the coil. To verify the validity of both proposed methods, the simulation results were compared and discussed with the experimental results.

WKB 방법에 의한 일차원 완경사 파랑식의 해석해 (An Analytical Solution of One Dimensional Mild Slope Equation by the WKB method)

  • 서승남
    • 한국해안·해양공학회논문집
    • /
    • 제20권5호
    • /
    • pp.461-471
    • /
    • 2008
  • WKB 방법에 의한 일차원 완경사 파랑식의 해석해를 유도하였고 이는 Porter(2003)의 해와 유사한 형태를 갖는다. 적용적 측면에서 본 해석해는 관련 수치해에 견줄 만큼 해석상의 일반성을 갖는다. 유도과정에서 해면함수로 표현된 굴절 방정식의 해도 얻었다. Bremmer 방법을 이용한 본 해석해에 대한 수치계산 결과를 제시하였고 이들은 기존 결과와 일치한다.

수치, 해석적, 준 해석적 및 해석적 방법을 통합한 새로운 입자추적기술 개발 (Development of new integrated particle tracking techniques combining the numerical method, semi-analytical method, and analytical method)

  • 석희준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권6호
    • /
    • pp.50-61
    • /
    • 2008
  • 본 연구를 통해서 율러리안-라그랑지안 방법(ELM)의 본질적인 문제점인 입자추적오차에 의해 발생되는 질량오차를 최소화하기 위해서, 새로운 통합 입자 추적 방법이 개발되었다. 새로운 통합입자 추적 방법은 시간 간격 내에서 시공간의 속도변화를 동시에 고려한 수치 해석적 방법, 준해석적 방법, 그리고 해석적 방법을 결합시킨 것이다. 수치 해석적 방법, 준해석적 방법, 그리고 해석적 방법의 수학적 유도를 자세히 나타내었고, 네 가지 예제를 만들어서 개발된 통합입자추적방법을 해석해 및 4차 룬지쿠타 방법과의 비교를 통해서 검증하였을 뿐만 아니라 기존의 입자추적방법인 Lu의 방법과 비교를 통해서 우수성을 보였다.