DOI QR코드

DOI QR Code

A photo-thermal interaction in semi-conductor medium with cylindrical cavity by analytical and numerical methods

  • Abbas, Ibrahim A. (Department of mathematics, Faculty of Science, Sohag University)
  • Received : 2021.03.03
  • Accepted : 2021.04.27
  • Published : 2021.05.25

Abstract

In this work, we compare the analytical solutions with the numerical solutions for photothermal interactions in semiconductor medium containing cylindrical cavity. This paper is devoted to a study of the photothermal interactions in semiconductor medium in the context of the coupled photo-thermal model. The basic equations are formulated in the domain of Laplace transform and the eigenvalue scheme are used to get the analytical solutions. The numerical solution is obtained by using the implicit finite difference method (IFDM). A comparison between the analytical solution and the numerical solutions are obtained. It is found that the implicit finite difference method (IFDM) is applicable, simple and efficient for such problems.

Keywords

Acknowledgement

This work was funded by the Academy of Scientific Research and Technology, Egypt, under Science UP grant No. (6473). The authors, therefore, acknowledge with thanks the Academy of Scientific Research and Technology for financial support.

References

  1. Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
  2. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
  3. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. http://doi.org/10.12989/scs.2016.20.5.1103.
  4. Abd-Alla, A., El-Naggar, A. and Fahmy, M. (2003), "Magneto-thermoelastic problem in non-homogeneous isotropic cylinder", Heat Mass Transfer, 39(7), 625-629. https://doi.org/10.1007/s00231-002-0370-3.
  5. Abd-Alla, A., Salama, A., Abd-Ei-Salam, M. and Hosham, H. (2007), "An implicit finite-difference method for solving the transient coupled thermoelasticity of an annular fin", Appl. Math. Inf. Sci., 1(1), 79-93.
  6. Abd-Alla, A.M., Abo-Dahab, S.M. and Kilany, A.A. (2021), "Finite difference technique to solve a problem of generalized thermoelasticity on an annular cylinder under the effect of rotation", Numer. Meth. Partial Differntial Eq., 37(3), 2634-2646. https://doi.org/10.1002/num.22753.
  7. Alzahrani, F. (2020), "The effects of variable thermal conductivity in semiconductor materials photogenerated by a focused thermal shock", Mathematics, 8(8), 1230. https://doi.org/10.3390/math8081230.
  8. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://doi.org/10.12989/scs.2016.22.2.369.
  9. Alzahrani, F.S. and Abbas, I.A. (2019), "Photo-thermo-elastic interactions without energy dissipation in a semiconductor half-space", Results Phys., 15, 102805. https://doi.org/10.1016/j.rinp.2019.102805.
  10. Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23(3), 217-225. http://doi.org/10.12989/gae.2020.23.3.217.
  11. Bhatti, M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B. 33(35), 1950439. https://doi.org/10.1142/S0217984919504396.
  12. Das, B., Ghosh, D. and Lahiri, A. (2021), "Electromagnetothermoelastic analysis for a thin circular semiconducting medium", J. Therm. Stress., 44(4), 395-408. https://doi.org/10.1080/01495739.2021.1881001.
  13. Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Indian J. Pure Appl. Math., 28(12), 1573-1594. https://doi.org/10.1515/ijame-2017-0053.
  14. El-Naggar, A., Kishka, Z., Abd-Alla, A., Abbas, I., Abo-Dahab, S. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. https://doi.org/10.1166/jctn.2013.2862.
  15. Hobiny, A. and Abbas, I. (2019), "A GN model on photothermal interactions in a two-dimensions semiconductor half space", Results Phys., 15, 102588. https://doi.org/10.1016/j.rinp.2019.102588.
  16. Hobiny, A.D. and Abbas, I.A. (2017), "A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity", Mech. Time-Dependent Mater., 21(1), 61-72. https://doi.org/10.1007/s11043-016-9318-8.
  17. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. http://doi.org/10.12989/gae.2020.21.1.085.
  18. Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
  19. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., 69(6), 607-614. http://doi.org/10.12989/sem.2019.69.6.607.
  20. Lata, P. and Singh, S. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. http://doi.org/10.12989/sem.2020.74.3.341.
  21. Lotfy, K., El-Bary, A., Hassan, W., Alharbi, A. and Almatrafi, M. (2020), "Electromagnetic and Thomson effects during photothermal transport process of a rotator semiconductor medium under hydrostatic initial stress", Results Phys., 16, 102983. https://doi.org/10.1016/j.rinp.2020.102983.
  22. Lotfy, K., El-Bary, A. and Tantawi, R. (2019), "Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory", Eur. Phys. J. Plus, 134(6), 280. https://doi.org/10.1140/epjp/i2019-12631-1.
  23. Lotfy, K., Hassan, W., El-Bary, A. and Kadry, M.A. (2020), "Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation", Results Phys., 16, 102877. https://doi.org/10.1016/j.rinp.2019.102877.
  24. Mandelis, A., Nestoros, M. and Christofides, C. (1997), "Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures", Opt. Eng., 36(2), 459-468. https://doi.org/10.1117/1.601217
  25. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
  26. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
  27. Mukhopadhyay, S. and Kumar, R. (2009), "Solution of a problem of generalized thermoelasticity of an annular cylinder with variable material properties by finite difference method", Comput. Meth. Sci. Technol., 15(2), 169-176. https://doi.org/10.12921/cmst.2009.15.02.169-176.
  28. Palani, G. and Abbas, I. (2009), "Free convection MHD flow with thermal radiation from an impulsively-started vertical plate", Nonlin. Anal. Modell. Control, 14(1), 73-84. https://doi.org/10.15388/NA.2009.14.1.14531.
  29. Patra, S., Shit, G. and Das, B. (2020), "Computational model on magnetothermoelastic analysis of a rotating cylinder using finite difference method", Waves Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2020.1831710.
  30. Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transfer Res., 50(16). https://doi.org/10.1615/HeatTransRes.2019025622.
  31. Sarkar, N., Ghosh, D. and Lahiri, A. (2019), "A two-dimensional magneto-thermoelastic problem based on a new two-temperature generalized thermoelasticity model with memory-dependent derivative", Mech. Adv. Mater. Struct., 26(11), 957-966. https://doi.org/10.1080/15376494.2018.1432784.
  32. Song, Y., Bai, J. and Ren, Z. (2012), "Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory", Acta Mech., 223(7), 1545-1557. https://doi.org/10.1007/s00707-012-0677-1.
  33. Song, Y., Cretin, B., Todorovic, D.M. and Vairac, P. (2008), "Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency", J. Phys. D Appl. Phys., 41(15), 155106. https://doi.org/10.1088/0022-3727/41/15/155106.
  34. Song, Y., Todorovic, D.M., Cretin, B., Vairac, P., Xu, J. and Bai, J. (2014), "Bending of semiconducting cantilevers under photothermal excitation", Int. J. Thermophys., 35(2), 305-319. https://doi.org/10.1007/s10765-014-1572-x.
  35. Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM. 13(1), 47-49. https://doi.org/10.1145/361953.361969.
  36. Todorovic, D. (2003), "Photothermal and electronic elastic effects in microelectromechanical structures", Rev. Sci. Instrument., 74(1), 578-581. https://doi.org/10.1063/1.1520324.
  37. Todorovic, D. (2003), "Plasma, thermal, and elastic waves in semiconductors", Rev. Sci. Instrument., 74(1), 582-585. https://doi.org/10.1063/1.1523133.
  38. Vinyas, M., Harursampath, D. and Kattimani, S. (2020), "Thermal response analysis of multi-layered magneto-electro-thermoelastic plates using higher order shear deformation theory", Struct. Eng. Mech., 73(6), 667-684. http://doi.org/10.12989/sem.2020.73.6.667.
  39. Youssef, H.M. and El-Bary, A.A. (2018), "Theory of hyperbolic two-temperature generalized thermoelasticity", Mater. Phys. Mech., 40 158-171. http://doi.org/10.18720/MPM.4022018_4.