• Title/Summary/Keyword: Analytical ability

Search Result 263, Processing Time 0.027 seconds

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.

Trusted Fog Based Mashup Service for Multimedia IoT based Smart Environmental Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 2017
  • Data mashup is a web technology that combines information from multiple sources into a single web application. Mashup applications create a new horizon for new services, like environmental monitoring. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations utilize a data mashup to merge datasets from different Internet of multimedia things (IoMT) context-based services in order to leverage its data analytics performance and the accuracy of the predictions. However, mashup different datasets from multiple sources is a privacy hazard as it might reveal citizens specific behaviors in different regions. The ability to preserve privacy in mashuped datasets and at the same time provide accurate insights becomes a key success for the spread of mashup services. In this paper, we present our efforts to build a fog-based middleware for private data mashup (FMPM) to serve a centralized environmental monitoring service. The proposed middleware is equipped with concealment mechanisms to preserve the privacy of the merged datasets from multiple IoMT networks involved in the mashup application. Also, these mechanisms preserve the aggregates in the dataset to maximize the usability of information to attain accurate analytical results. We also provide a scenario for IoMT-enabled data mashup service and experimentation results.

Determination of the profit-maximizing configuration for the modular cell manufacturing system using stochastic process (실시간 고장포용 생산시스템의 적정 성능 유지를 위한 최적 설계 기법에 관한 연구)

  • Park, Seung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.614-621
    • /
    • 1999
  • In this paper, the analytical appproaches are presented for jointly determining the profit-miximizing configuration of the fault-tolerance real time modular cell manufacturing system. The transient(time-dependent) analysis of Markovian models is firstly applied to modular cell manufacturing system from a performability viewpoint whose modeling advantage lies in its ability to express the performance that truly matters - the user's perception of it - as well as various performance measures compositely in the context of application. The modular cells are modeled with hybrid decomposition method and then availability measures such as instantaneous availability, interval availability, expected cumulative operational time are evaluated as special cases of performability. In addition to this evaluation, sensitivity analysis of the entire manufacturing system as well as each machining cell is performed, from which the time of a major repair policy and the optimal configuration among the alternative configurations of the system can be determined. Secondly, the recovery policies from the machine failures by computing the minimal number of redundant machines and also from the task failures by computing the minimum number of tasks equipped with detection schemes of task failure and reworked upon failure detection, to meet the timing requirements are optimized. Some numerical examples are presented to demonstrate the effectiveness of the work.

  • PDF

Concept Development of Resilience - Focusing on Cancer Patients - (극복력(resilience) 개념 개발 - 암 환자를 중심으로 -)

  • Hong, Sung-Kyung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.15 no.1
    • /
    • pp.109-119
    • /
    • 2009
  • Purpose: This study was done to develop the concept of resilience focusing on cancer patients in Korea. Methods: This study was done in three phases sugggested in the Hybrid Model; theoretical phase, fieldwork phase, and analytical phase. Eight cancer patients participated in the fieldwork phase. Results: The antecedent of the concept of resilience was the crisis or adversity that threatens life or changes the quality of life. The attributes of resilience were psychosocial, relational, situational confrontation and faith (philosophical) characteristics. 1) Psychosocial : self worth, self efficacy, self-confidence, independence, optimistic & positive mind, strong will, and responsibility, 2) Relational : relation-oriented, intimacy, and social interests, 3) Situational confrontation : appraisal of stress situation, problem-oriented coping, and ability to applicate a new situation, 4) Faith (philosophical) : the belief that self-knowledge is valuable, finding positive meanings, religious belief, a belief that lives are worthwhile and meaningful, and a balanced perspective of one's life. The consequences of resilience were acceptance of adversity, getting through one's dread and apprehensions, and gratitude & sharing life. The contributing factor of resilience is positive family support. Conclusion: The concept of resilience is necessary in order to manage cancer patients for promoting quality of life so that its application may have a positive impact on the patients care.

Reconsideration of F1 Score as a Performance Measure in Mass Spectrometry-based Metabolomics

  • Jeong, Jaesik;Kim, Han Sol;Kim, Shin June
    • Journal of Integrative Natural Science
    • /
    • v.11 no.3
    • /
    • pp.161-164
    • /
    • 2018
  • Over the past decade, mass spectrometry-based metabolomics, especially two dimensional gas chromatography mass spectrometry (GCxGC/TOF-MS), has become a key analytical tool for metabolomics data because of its sensitivity and ability to analyze complex biological or biochemical sample. However, the need to reduce variations within/between experiments has been reported and methodological developments to overcome such problem has long been a critical issue. Along with methodological developments, developing reasonable performance measure has also been studied. Following four numerical measures have been typically used for comparison: sensitivity, specificity, receiver operating characteristic (ROC) curves, and positive predictive value (PPV). However, more recently, such measures are replaced with F1 score in many fields including metabolomics area without any carefulness of its validity. Thus, we want to investigate the validity of F1 score on two examples, with the goal of raising the awareness in choosing appropriate performance comparison measure. We noticed that F1 score itself, as a performance measure, was not good enough. Accordingly, we suggest that F1 score be supplemented with other performance measure such as specificity to improve its validity.

Development and Application of Evaluation System for Disaster Prevention Ability of Urban Parks (도시공원 방재기능 평가체계 개발 및 적용)

  • Huang, Zhirui;Lee, Ai Ran
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.199-207
    • /
    • 2020
  • Against the backdrop of frequent weather disasters such as floods, droughts, and heat waves worldwide, urban parks should provide functions for the safety of urban residents as well as rest, culture, and ecological functions. In this study, a classification system for urban disaster prevention parks is proposed for the safety of the urbanites with the aim of securing a complex function in a green space in response to climate changes in the city. Analytical indicators were extracted through literature research, and the classification system was verified through on-site surveys of the target sites and interviews with those involved. The large class for evaluation was divided into three types: location, spatial composition, and disaster prevention complex facilities of urban parks; the direction of improvement was proposed for problems identified through empirical analysis.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Performance Evaluation of a $SF_6$ Gas Circuit Breaker with Experimental Investigation (초고압 $SF_6$ 가스 차단기의 실험적 차단성능 평가)

  • Jeong, Y.W.;Park, H.T.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.96-99
    • /
    • 2005
  • In this study, we build system and techniques of evaluating the interruption performance of the GCB with experimental method. We constructed a simplified synthetic test circuit of which ability is up to 245kV, 50kA BTF test. And We composed a model test circuit breaker with puffer assisted self blasting type GCB. With this circuit breaker, we carried out the experiment of no load and SLF90. During the tests, we measured the several factors such as stroke, pressure, arc temperature, the voltage and current near the current zero and dI/dt, dV/dt. Arc conductivity before 200ns before current zero which is one of the indexes of the thermal recovery of a GCB was measured. With these kinds of measurement, we could estimate the performance of a GCB fundamentally. Futhermore these results were used to adjust the arc modeling with CFD(computational fluid dynamics) and we could increase the plausibility of the analytical method.

  • PDF

TOP-MOUNTED IN-CORE INSTRUMENTATION : CURRENT STATUS AND TECHNICAL ISSUES

  • KIM, SUNG JUN;KANG, TAE KYO;CHO, YEON HO;CHANG, SANG GYOON;LEE, DAE HEE;MAENG, CHEOL SOO
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.154-166
    • /
    • 2015
  • The in-core instrumentation measures core power distribution and coolant temperature in local regions of the core in pressurized water reactors. The installation types are distinguished by the designs of routing paths that exit either through reactor bottom mounted instrument nozzles or through reactor top mounted instrument nozzles. Although each type has unique advantages, it is generally known that top mounted design is more competitive with respect to emphasizing nuclear safety issues and ability to cope with severe accidents. The international nuclear vendors have provided various types of reactors with top mounted design. Nuclear power reactors in Korea, however, only have been designed to be applicable to the use of bottom mounted design, and it has been pointed out that the capabilities of Korean reactors against severe accidents should be further enhanced. The paper deals with technical issues on reactor internal and external design, in-core instrumentation, support assembly, sealing mechanism with nozzles, handling, and analytical issues in order to establish the ways of development.

Feasibility Study for Detection of Turnip yellow mosaic virus (TYMV) Infection of Chinese Cabbage Plants Using Raman Spectroscopy

  • Kim, Saetbyeol;Lee, Sanguk;Chi, Hee-Youn;Kim, Mi-Kyeong;Kim, Jeong-Soo;Lee, Su-Heon;Chung, Hoeil
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.105-109
    • /
    • 2013
  • Raman spectroscopy provides many advantages compared to other common analytical techniques due to its ability of rapid and accurate identification of unknown specimens as well as simple sample preparation. Here, we described potential of Raman spectroscopic technique as an efficient and high throughput method to detect plants infected by economically important viruses. To enhance the detection sensitivity of Raman measurement, surface enhanced Raman scattering (SERS) was employed. Spectra of extracts from healthy and Turnip yellow mosaic virus (TYMV) infected Chinese cabbage leaves were collected by mixing with gold (Au) nanoparticles. Our result showed that TYMV infected plants could be discriminated from non-infected healthy plants, suggesting the current method described here would be an alternative potential tool to screen virus-infection of plants in fields although it needs more studies to generalize the technique.