• 제목/요약/키워드: Analytical Stress Analysis

검색결과 884건 처리시간 0.032초

인장잔류응력장으로부터 피로균열이 전파하는 경우 잔류응력의 재분포거동에 대한 해석적 검토 (An Analysis of the Redistribution of Residual Stress Due to Crack Propagation Initially Through Residual Tensile Stress Field by Finite Element Method)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • 제21권7호
    • /
    • pp.71-77
    • /
    • 2003
  • In this study, an investigation based on the superposition principle to predict residual stress redistribution caused by crack propagation itself initially through residual tensile stress field was performed by finite element method. The tendency in residual stress redistribution caused by crack propagation recognized both from the analytical results and experimental result was the residual stress concentration consecutively occurred in the vicinity of crack tip even the situation that the crack propagated to the region initially residual compressive stress existed. The software for the analysis is ABAQUS, which is a general purpose finite element package. The analytical method that attempt to take the plastic deformation at the crack tip due to tensile residual stress into the consideration of residual stress redistribution caused by crack propagation was proposed. The plastic zone size at the tip of fatigue crack and redistributed residual stresses were calculated by finite element method on the bases of the concept of Dugdale model. Comparing these analytical results with experimental results, it is verified that the residual stress redistribution caused by crack propagation can be predicted by finite element method with the proposed analytical method.

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발 (A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels)

  • 전융제;윤지강;이재민;김선호;김영천;남승훈;노우람
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

고온에서 이중튜브의 열응력특성해석 (Analysis of the Stress Characteristics of Double Layered Tube at Elevated Temperature)

  • 김은화;장정환;박성필;문영훈
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.405-410
    • /
    • 2010
  • Double layered tube that has been used for transportation and oil piping system is occasionally exposed to elevated temperature. The change in stress state at elevated temperature is important for the safe design of double layered tube. In this study, the variation of stress state for hydroformed double layered tube of which inner tube is stainless steel and outer tube is mild steel has been analytically analyzed. To characterize the thermal stress at elevated temperature, analytical model to provide thermal stresses between outer tube and inner tube was developed by using theories of elasticity and Lame equation. The feasibility of analytical model is verified by finite element analysis using ANSYS $CLASSIC^{TM}$, commercially available code. The variation of thermal stress at various thickness combination of inner and outer tube has also been investigated by proposed analytical model.

압축잔류응력에 의하여 선단부가 닫힌 균열의 개구거동에 대한 유한요소법에 의한 해석방법의 제안 (A Proposal of an Analytical Method for Estimating the Opening Behaviour of Tip-Closed Crack in Compressive Residual Stress by Finite Element Method)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.71-76
    • /
    • 2003
  • For the purpose of clarifying the influence of welding residual stress to the fatigue crack propagations behaviour, an analytical investigation based on finite element method is performed to examine the opening behaviour of tip-closed crack in the compressive residual stress. A finite element model comprised of contact elements for the crack plane and plane stress elements for the base material is used to evaluate crack opening stress of the crack existing in the residual stress field. Also an analytical method based on the superposition principle to estimate the length of opened part of tip closed crack and the stress distribution adjacent to the crack during uploading is applied to the finite element model. The software for the analysis is ABAQUS, which is a general purpose finite element package. The results show that stresses distributed on the crack surfaces are reduced and approached to zero as the applied stresses are increased up to crack tip opening stress and no mechanical discontinuity is found at the boundary of contact elements and plane stress elements. It is verified that the opening behavior of the fatigue crack in the residual stress can be predicted by finite element method with the proposed analytical method.

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

A unified solution for vibration analysis of plates with general structural stress distributions

  • Yang, Nian;Chen, Lu-Yun;Yi, Hong;Liu, Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.615-630
    • /
    • 2016
  • Complex stress distributions often exist in ocean engineering structures. This stress influences structural vibrations. Finite Element Methods exhibit some shortcomings for solving non-uniform stress problems, such as an unclear physical interpretation, complicated operation, and large number of computations. Analytical methods research considers mainly uniform stress problems, and often, their methods cannot be applied in practical marine structures with non-uniform stress. In this paper, an analytical method is proposed to solve the vibration of plates with general stress distributions. Non-uniform stress is expressed as a special series, and the stress influence is inserted into a vibration equation that is solved through decoupling to obtain an analytical solution. This method has been verified using numerical examples and can be used in arbitrary stress distribution cases. This method requires fewer computations and it provides a clearer physical interpretation, so it has advantages in some qualitative research.

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

압축잔류응력장을 전파하는 피로균열의 개구거동의 유한요소법을 이용한 해석적 검토 (An Analysis of the Fatigue Crack Opening Behaviour in the Welding Residual Stress Field by the Finite Element Method)

  • 박응준;김응준;유승현
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.77-83
    • /
    • 2003
  • The finite element analysis was performed for the cracks existing in residual stress fields in order to investigate the effects of configuration of residual stress distribution to the fatigue crack opening behaviour. And the variation of stress distributions adjacent to the crack caused by uploading was examined. The finite element model with contact elements for the crack plane and plane stress elements for the base material and the analytical method based on the superposition principle to estimate crack opening behaviour and the stress distribution adjacent to the crack subjected to uploading were used. The results of the analysis showed that crack opening behaviors and variations of stress distribution caused by uploading were changed depending on the configuration of residual stress distribution. When the crack existed in the region of compressive residual stress and the configuration of compressive residual stress distribution were inclined, a partial crack opening just behind of a crack tip occurred during uploading. Based on the above results, it was clarified that the crack opening behaviour in the residual stress field could be predicted accurately by the finite element analysis using these analytical method and model.

FEM을 이용한 주조금형(鑄造金型)의 탄소성(彈塑性) 열응력(熱應力) 및 열변형(熱變形) 해석(解析) (Analysis on the Elasto-Plastic Thermal Stress and Deformation of Metal Casting Mould by FEM (Finite Element Method))

  • 김옥삼;구본권;민수홍
    • 한국주조공학회지
    • /
    • 제13권1호
    • /
    • pp.81-93
    • /
    • 1993
  • It is well-known that the analysis of elasto-plastic thermal stress and deformation are substantially important in optimal design of metal casting mould. The unsteady state thermal stress and deformation generated during the solidification process of ingot and mould have been analyzed by two dimensional thermal elasto-plastic theories. Distributions of temperature, stress and relative displacement of the mould are calculated by the finite element method and compared with experimental results. In the elasto-plastic thermal stress analysis, compressive stress occurred at the inside wall of the mould whereas tensile stress occurred at outside wall. A coincidence between the analytical and experimental results is found to be fairly good, showing that the proposed analytical method is reliable.

  • PDF