• Title/Summary/Keyword: Analytic method

Search Result 2,313, Processing Time 0.033 seconds

A Study on Optimal Location Selection and Analytic Method of Landmark Element in terms of Visual Perception (시각적 측면에서 랜드마크 요소의 최적입지선정 분석방법에 관한 연구)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6360-6367
    • /
    • 2015
  • The location selection of the element that should guarantee easy visual perception, like the landmark, is the a topic that appears much in the design process. Recently, a graph analysis technique using computers has been applied in order to evaluate the visibility of the visual element, but the analytic frame is flat and the setting of the visual pont and the matrix are fixed so there were great limitations in obtaining the results of the practical analysis. Thus, this study presented Nondirectional Multi-Dimensional Calculation (MDVC-N), an analytic methodology available for the analysis of the dynamic visual point in the 3D environment. It thus attempted to establish the analytic application using the 3D computer graphics technology and designed a script structure to set the visual point and the matrix. In addition to that, this study tried to verify the analytic methodology by applying the complex land as an example model, where buildings in various heights of terrains with a high-differences are located, verifying the same analytic methodology. It thus tried to identify the visual characteristics of each alternative location. The following results were gained from the study. 1) The visibility can be measured quantitatively trough the application of the 6-alternatives. 2) Using the 3dimensional graph, intuitive analysis was possible. 3) It attempted to improve the analytic applicability by calculating the results corrected as a variable behavior from the local integration variable of the space syntax.

Empirical Initial Scantling Equations on Optimal Structural Design of Submarine Pressure Hull

  • Oh, Dohan;Koo, Bonguk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The submarine is an underwater weapon system which covertly attacks the enemy. Pressure hull of a submarine is a main system which has to have a capacity which can improve the survivability (e.g., protection of crews) from the high pressure and air pollution by a leakage of water, a fire caused by outside shock, explosion, and/or operational errors. In addition, pressure hull should keep the functional performance under the harsh environment. In this study, optimal design of submarine pressure hull is dealt with 7 case studies done by analytic method and then each result's adequacy is verified by numerical method such as Finite Element Analysis (FEA). For the structural analysis by FEM, material non-linearity and geometric non-linearity are considered. After FEA, the results by analytic method and numerical method are compared. Weight optimized pressure hull initial scantling methods are suggested such as a ratio with shell thickness, flange width, web height and/or relations with radius, yield strength and design pressure (DP). The suggested initial scantling formulae can reduce the pressure hull weight from 6% and 19%.

Data-Driven Kinematic Control for Robotic Spatial Augmented Reality System with Loose Kinematic Specifications

  • Lee, Ahyun;Lee, Joo-Haeng;Kim, Jaehong
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • We propose a data-driven kinematic control method for a robotic spatial augmented reality (RSAR) system. We assume a scenario where a robotic device and a projector-camera unit (PCU) are assembled in an ad hoc manner with loose kinematic specifications, which hinders the application of a conventional kinematic control method based on the exact link and joint specifications. In the proposed method, the kinematic relation between a PCU and joints is represented as a set of B-spline surfaces based on sample data rather than analytic or differential equations. The sampling process, which automatically records the values of joint angles and the corresponding external parameters of a PCU, is performed as an off-line process when an RSAR system is installed. In an on-line process, an external parameter of a PCU at a certain joint configuration, which is directly readable from motors, can be computed by evaluating the pre-built B-spline surfaces. We provide details of the proposed method and validate the model through a comparison with an analytic RSAR model with synthetic noises to simulate assembly errors.

Numerical calculation of Laminar flow in a Square Duct of 90° Bend (정사각형 단면을 갖는 90° 곡관의 층류유동 계산)

  • Kim H. T.;Kim J. J.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • A FA-FD hybrid method, developed for solving three-dimensional incompressible Navier-Stokes equations, is applied to calculate three-dimensional laminar flows through a square duct with a 90° bend. The method discretizes the convective terms in the primary flow direction with 3rd-order upwind finite-differences and the convective and diffusive terms in the transverse directions with the two-dimensional finite analytic method. The non-staggered grid system is used and the pressure-velocity coupling is achieved by a global iteration procedure based on the PISO algorithm. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a 90° bend of a square duct with both fully developed and developing entry flows. Although the computational result shows generally a good agreement with the experimental data, there are some significant discrepancies underlining the necessity of more accurate numerical methods as well as reliable experimental data for their validation.

  • PDF

Simulation of Motion Accuracy Considering Loads in Linear Motion Units (부하를 고려한 직선운동유니트의 정밀도 시뮬레이션 기술)

  • Khim, Gyungho;Park, Chun Hong;Oh, Jeong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.405-413
    • /
    • 2015
  • This paper presents the motion accuracy simulation considering loads such as workpiece weight, cutting force, cogging force of a linear motor, and force caused by misalignment and runout error of a ballscrew in linear motion units. The transfer function method is basically utilized to estimate 5-DOF motion errors, together with the equilibrium equations of force and moment on the table. The transfer function method is modified in order to consider clearance changed according to the loads in the double sided hydrostatic/aerostatic bearings. Then, the analytic model for predicting the 5-DOF motion errors is proposed with the modified transfer function method. Motion errors were simulated under different loading conditions in the linear motion units using hydrostatic, aerostatic, and linear motion bearings, respectively. And the proposed analytic model was verified by comparing the estimated and measured motion errors.

Using an Evaluative Criteria Software of Optimal Solutions for Enterprise Products' Sale

  • Liao, Shih Chung;Lin, Bing Yi
    • Journal of Distribution Science
    • /
    • v.13 no.4
    • /
    • pp.9-19
    • /
    • 2015
  • Purpose - This study focuses on the use of evaluative criteria software for imprecise market information, and product mapping relationships between design parameters and customer requirements. Research design, data, and methodology - This study involved using the product predicted value method, synthesizing design alternatives through a morphological analysis and plan, realizing the synthesis in multi-criteria decision-making (MCDM), and using its searching software capacity to obtain optimal solutions. Results - The establishment of product designs conforms to the customer demand, and promotes the optimization of several designs. In this study, the construction level analytic method and the simple multi attribute comment, or the quantity analytic method are used. Conclusions - This study provides a solution for enterprise products' multi-goals decision-making, because the product design lacks determinism, complexity, risk, conflict, and so on. In addition, the changeable factor renders the entire decision-making process more difficult. It uses Fuzzy deduction and the correlation technology for appraising the feasible method and multi-goals decision-making, to solve situations of the products' multi-goals and limited resources, and assigns resources for the best product design.

A Study on the Priority Ranks to Improve Work Environments in the Worker's Point of View (작업환경 소음 개선을 위한 작업자 관점의 우선순위 파악에 관한 연구)

  • Kim, Hwa-Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.202-212
    • /
    • 2005
  • This study was aimed at rating the existing work environment noise components and alternatives in point of worker's view. To answer the purpose, AHP(Analytic Hierarchy Process) method is adopted in this research. Based on the AHP method, this research abstracts a mathematically rigorous noise components and alternative's weights and proven process for priority and decision-making. By reconstructing complex hearing conservation programs to a series of pair-wise comparisons, and then synthesizing the results, this study not only helps establishments of noise countermeasure, but also provides a clear rationale for noise alternatives. The result of this study is summarized as follows; 1) Job satisfaction index and noise identification index are 63, 56 respectively. 2) Noise level(15.7%), frequency(14.1%) and directivity(13.6%) are main reasons in worker's ground. 3) There are some difference between the estimation of worker's identification and that of work sites. 4) Low noise machine(14.7%), enclosure(13.2%) and shielding(9.6%) are chosen for noise protection method by workers. 5) Noise environment improvement should be focused on noise source rather than personal protection. 6) By the AHP method, noise source countermeasure have a key role at work environments.