• 제목/요약/키워드: Analytic Continuation

검색결과 19건 처리시간 0.02초

INTEGRATION STRUCTURES FOR THE OPERATOR-VALUED FEYNMAN INTEGRAL

  • Jefferies, Brian
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.349-363
    • /
    • 2001
  • The analytic in mass operator-valued Feynman integral is related to integration with respect to unbounded set functions formed from the semigroup obtained by analytic continuation of the heat semigroup and the spectral measure of multiplication by characteristics functions.

  • PDF

ON THE CONVERGENCE AND APPLICATIONS OF NEWTON-LIKE METHODS FOR ANALYTIC OPERATORS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.41-50
    • /
    • 2002
  • We provide local and semilocal theorems for the convergence of Newton-like methods to a locally unique solution of an equation in a Banach space. The analytic property of the operator involved replaces the usual domain condition for Newton-like methods. In the case of the local results we show that the radius of convergence can be enlarged. A numerical example is given to justify our claim . This observation is important and finds applications in steplength selection in predictor-corrector continuation procedures.

GEOMETRIC AND ANALYTIC INTERPRETATION OF ORTHOSCHEME AND LAMBERT CUBE IN EXTENDED HYPERBOLIC SPACE

  • Cho, Yunhi;Kim, Hyuk
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1223-1256
    • /
    • 2013
  • We give a geometric proof of the analyticity of the volume of a tetrahedron in extended hyperbolic space, when vertices of the tetrahedron move continuously from inside to outside of a hyperbolic space keeping every face of the tetrahedron intersecting the hyperbolic space. Then we find a geometric and analytic interpretation of a truncated orthoscheme and Lambert cube in the hyperbolic space from the viewpoint of a tetrahedron in the extended hyperbolic space.

두 개의 동심 원형 개재물을 가지는 삼종 재료에서의 특이성 (A Singularity in a Trimaterial with Two Concentric Circular Inclusions)

  • 이택균;최승태;이경우;엄윤용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.170-175
    • /
    • 2000
  • Bimaterial containing an in-plane or an out-of-plane singularity embedded in the inclusion or in the unbounded matrix is first analyzed by using analytic continuation. Next, the series forms of solutions for the trimaterial with two concentric circular inclusions having an identical singularity are found based on an alternating technique using the solution for the bimaterial case. The sum of the first three or four terms of solutions derived provides an excellent approximation for most of material combinations. By applying continuous distributions of dislocations, the trimaterial solution obtained in this study may be used to solve crack problems in the same material.

  • PDF

ANALYTIC CONTINUATION OF WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS

  • Araci, Serkan;Acikgoz, Mehmet;Gursul, Aynur
    • 대한수학회논문집
    • /
    • 제28권3호
    • /
    • pp.457-462
    • /
    • 2013
  • In the present paper, we analyse analytic continuation of weighted $q$-Genocchi numbers and polynomials. A novel formula for weighted $q$-Genocchi-zeta function $\tilde{\zeta}_{G,q}(s{\mid}{\alpha})$ in terms of nested series of $\tilde{\zeta}_{G,q}(n{\mid}{\alpha})$ is derived. Moreover, we introduce a novel concept of dynamics of the zeros of analytically continued weighted $q$-Genocchi polynomials.

ON ESTIMATION OF UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS BY (p, q)-BERNSTEIN OPERATORS

  • Mursaleen, M.;Khan, Faisal;Saif, Mohd;Khan, Abdul Hakim
    • Korean Journal of Mathematics
    • /
    • 제27권2호
    • /
    • pp.505-514
    • /
    • 2019
  • In this paper we study the approximation properties of a continuous function by the sequence of (p, q)-Bernstein operators for q > p > 1. We obtain bounds of (p, q)-Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk $\{z:{\mid}z{\mid}{\leq}{\rho}\}$, then $B^n_{p,q}(g;z){\rightarrow}g(z)(n{\rightarrow}{\infty})$ uniformly on any compact set in the given disk $\{z:{\mid}z{\mid}{\leq}{\rho}\}$, ${\rho}>0$.

EXISTENCE OF RESONANCES FOR DIFFERENTIAL OPERATORS

  • Kim, In-Suk
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.337-353
    • /
    • 1994
  • Let H be a Schrodinger operator in $L^2$(R) H =(equation omitted) + V(x), with supp V ⊂ [-R, R]. A number $z_{0}$ / in the lower half-plane is called a resonance for H if for all $\phi$ with compact support 〈$\phi$, $(H - z)^{-l}$ $\phi$〉 has an analytic continuation from the upper half-plane to a part of the lower half-plane with a pole at z = $z_{0}$ . Thus a resonance is a sort of generalization of an eigenvalue. For Im k > 0, ($H - k^2$)$^{-1}$ is an integral operator with kernel, given by Green's function(omitted)

  • PDF

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.