• Title/Summary/Keyword: Analysis transient

Search Result 3,070, Processing Time 0.033 seconds

The Loss of Coolant Flow Accident Analysis in Kori-1 (고리1호기 원자로 냉각재 유량상실사고 해석)

  • Kook Jong Lee;Un Chul Lee;Jin Soo Kim;Si Hwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.256-266
    • /
    • 1985
  • The loss of coolant flow accident is analyzed for the pressurized water reactor of Korea Nuclear Unit-1. The loss of coolant flow accident is classified into three types in accordance with its severity; partial loss of coolant flow, complete loss of coolant flow and pump locked rotor accident. Analysis has been carried out in three stages; system transient and average core analysis, DNBR calculation and hot spot analysis. The purpose of developing KTRAN is to simulate the transient fast. For the DNBR calculation, the thermal hydraulic codes, SCAN and COBRA IV-1, are adopted. And for the hot spot analysis, the fuel thermal transient code LTRAN is employed. This code system should be fast responding to the transient analysis. In case the transient occurs, severity comes within a couple of seconds. So response should be fast to accomodate the following sequence of the accident. Unfortunately this purpose could not be achieved by KTRAN. However, the calculated results are well comparable with FSAR results in range. Thereby, the effectiveness of KTRAN code analysis in this type of accident is proven.

  • PDF

Analytical Analysis of PT Ferroresonance in the Transient-State (과도상태에서 PT 철공진의 해석적 분석)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Zheng, Tai-Ying;Kim, Yeon-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.860-865
    • /
    • 2010
  • When a circuit breaker is opened, a large capacitance around the buses, the circuit breaker and the potential transformer (PT) might cause PT ferroresonance. During PT ferroresonance, the iron core repeats saturation and unsaturation even though the supplied voltage is a rated voltage. This paper describes an analytical analysis of PT ferroresonance in the transient-state. To analyze ferroresonance analytically, the iron core is modelled by a simplified two-segment core model in this paper. Thus, a nonlinear ordinary differential equation (ODE) for the flux linkage is changed into a linear ODE with constant coefficients, which enables an analytical analysis. In this simplified model, each state, which is either saturated or unsaturated state, corresponds to one of the three modes, i.e. overdamping, critical damping and underdamping. The flux linkage and the voltage in each state are obtained analytically by solving the linear ODE with constant coefficients. The proposed transient analysis is effective in the more understanding of ferroresonance and thus can be used to design a ferroresonance prevention or suppression circuit of a PT.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$Arc welding

  • Cho, Y.;Rhee, S.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.51-60
    • /
    • 2001
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermo-mechanical analysis has been performed for the $CO_2$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a back propagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the failure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

A Simple Dynamic Model and Transient Simulation of the Nuclear Power Reactor on Microcomputers

  • Han, Gee-Yang;Park, Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.605-610
    • /
    • 1997
  • A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis.

  • PDF

A Quantitative Performance Input for an Input Observer ( I ) - Analysis in Transient State - (입력관측기의 정량적 성능지표 (I) -과도상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2060-2066
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor transient performance with respect to ill-conditioning factors such as unknown initial estimates, round-off error, etc. For the robust transient performance, the effects of these ill-conditioning factors must be minimized in designing observers. In this paper, the transient performance of the closed-loop state and input observer is investigated quantitatively by considering the error bounds due to ill-conditioning factors. The performance indices are selected from these error bounds and are related to the observer robustness with respect to the ill -conditioning factors. The closed-loop state and input observer with small performance indices is considered as a well-conditioned observer from the transient perspective.

Transient Power Flow Analysis of Beam and Plate (과도 입력파워에 대한 보와 평판의 파워흐름해석)

  • Hwang, Dae-Woong;Seo, Seong-Hoon;Kwon, Hyun-Wung;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.624-631
    • /
    • 2007
  • PFA (power flow analysis) has been recognized as a useful method in vibration analysis of medium-to-high frequency ranges. Until now, PFA method has been developed for steady-state vibration problems. In this paper, PFA method has been expanded to transient problem. New energy governing equations are derived considering time dependent terms in beam and plate. Analytic solutions of those equations are found in simple beam and plate, and are verified by comparing with modal solutions.

Transient Response Analysis of Trapezoidal Corrugated Plates with Stiffeners (보강된 사다리꼴 주름판의 과도 응답 해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.788-794
    • /
    • 2014
  • In this paper, the transient response analysis of the trapezoidal corrugated plate subjected to the pulse load is investigated by the theoretical method. Three types of pulse loads are considered: stepped, isosceles triangular and right triangular pulse loads. The corrugated plates can be represented as an orthotropic plate. Both the effective extensional and flexural stiffness of this equivalent orthotropic plate are considered in the analysis. The plate is stiffened by concentric stiffeners perpendicular to the corrugation direction. The stiffening effect is represented by the discrete stiffener theory. This theoretical results are validated by those obtained from 3D finite element analysis based on shell elements. Some numerical results are presented to check the effect of the geometric properties.

3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

  • Jin Hur;Kang, Gyu-Hong;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.122-127
    • /
    • 2003
  • This paper presents a new time-stepping 3-D analysis method coupled with an external circuit with motion equation for dynamic transient analysis of induction machines. In this method, the magneto-motive force (MMF) generated by induced current is modeled as a passive source in the magnetic equivalent network. So, by using only scalar potential at each node, the method is able to analyze induction machines with faster computation time and less memory requirement than conventional numerical methods. Also, this method is capable of modeling the movement of the mover without the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From comparisons between the results of the analysis and the experiments, it is verified that the proposed method is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.