• 제목/요약/키워드: Analysis system

검색결과 69,463건 처리시간 0.078초

무장발사장치 체계성능분석을 위한 시뮬레이터 개념 모델링 사례 (A Conceptual Model for the Performance Analysis Simulator of a Weapon Launching System)

  • 윤재문
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.407-414
    • /
    • 2009
  • This paper describes a conceptual model for the performance analysis simulator of a weapon launching system. The system performance analysis simulator is envisioned to provide an integrated analysis environment in which the system performance and operational effectiveness can be analyzed in more rapid and efficient way. The conceptual model for the simulator describes a referent independently of specific technology and implementation, and it can be used to transform the simulator requirements into the simulator system specifications.

DSP를 이용한 고조파 측정 및 분석 (Measurement and Analysis Harmonics Using DSP)

  • 이상익;유재근;전정채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.178-180
    • /
    • 2002
  • Limitation countermeasure on harmonics occurred by power conversion installation, motor speed control equipment, and so on of power system is very important problem, and first of all, accuracy harmonics analysis in system is required for appropriate limitation counterplan. Analysis and judgement on power system harmonic by measurement are needed because analysis by mathematical model generally used for these harmonic analysis, if nonlinear ingredient is included in system, is not relatively correct. So, in this paper, system to measure and analyze harmonic by installing it in a power system, using DSP(Digital Signal Processor), is designed and developed. Also, it's performance is verified by installing it in the system that harmonics occurred.

  • PDF

설계변수 표본에 근거한 다물체계 성능의 통계적 예측 (Statistical Performance Estimation of a Multibody System Based on Design Variable Samples)

  • 최찬규;유홍희
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1449-1454
    • /
    • 2009
  • The performance variation of a multibody system is affected by a variation of various design variables of the system. And the effects of design variable variations on the performance variation must be considered in design of a multibody system. Accordingly, a variation analysis of a multibody system needs to be conducted in design of a multibody system. For a variation analysis of a performance, population mean and variance which are called statistical parameters of design variables are needed. However, an evaluation of statistical parameters of design variables is impossible in many practical cases. Therefore, an estimation of statistical parameters of the performance based on sample mean and variance which are called statistic of design variables is needed. In this paper, the variation analysis method for a multibody system based on design variable samples was proposed. And, using the proposed method, a variation analysis of the vehicle ride comfort based on sample statistic of design variables was conducted.

기능적 여유자유도를 가지는 CTS 시스템의 기구학/역기구학 해석 (Kinematic/Inverse Kinematic Analysis of Captive Trajectory Simulation System with Functional Redundancy)

  • 이도관;이상정
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.263-271
    • /
    • 2017
  • A captive trajectory simulation (CTS) system is used to investigate the separation behavior of the store model by moving the model to an arbitrary pose and position based on aerodynamic data. A CTS system operated inside a wind tunnel is designed to match the structure of the wind tunnel facility. As a result, each CTS system has different kinematic structure, and inverse kinematic analysis of the system is necessary. In this study, kinematic/inverse kinematic analysis for the CTS system with functional redundancy is performed. Inverse kinematic analysis with combined numerical and analytical approach is especially proposed. The suggested approach utilizes the redundancy to improve the safety of the system, and has advantages in real time analysis.

그린홈 적용 태양광 발전시스템의 편익비용분석에 관한 연구 (A Study on the Benefit-Cost Analysis of Photovoltaic System in the Greenhome)

  • 정순성
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.112-117
    • /
    • 2014
  • The purpose of this study is to suggest the benefit-cost analysis for photovoltaic system in greenhome. Perspectives of benefit-cost analysis for photovoltaic system in greenhome is participant, non-participant, administrator and nation. This study identifies the cost and benefit components and benefit-cost calculation procedures from four major perspectives : participant, non-participant, administrator and nation. The results of benefit-cost analysis from each perspective can be expressed in a variety of ways, but in all cases it is necessary to calculate the net present value of photovoltaic system impacts over the lifecycle of those impacts.

트랙좌표계를 이용한 철도차량의 동역학 해석에 관한 연구 (A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.122-130
    • /
    • 2013
  • Rail geometries such as cant, grade and curvature can be easily represented by means of a track coordinate system. In this analysis, in order to derive a dynamic and constraint equation of a wheelset, the track coordinate system is used as an intermediate stage. Dynamic and constraint equations of railway vehicle bodies except the wheelset are written in the Cartesian coordinate system as a conventional method. Therefore, whole dynamic equations of a railway vehicle are derived by combining wheelset dynamic equations and dynamic equations of railway vehicle bodies. Constraint equations and constraint Jacobians are newly derived for the track coordinate system. A process for numerical analysis is suggested for the derived dynamic and constraint equations of a railway vehicle. The proposed dynamic analysis of a railway vehicle is validated by comparison against results obtained from VI-RAIL analysis.

Architectural model driven dependability analysis of computer based safety system in nuclear power plant

  • Wakankar, Amol;Kabra, Ashutosh;Bhattacharjee, A.K.;Karmakar, Gopinath
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.463-478
    • /
    • 2019
  • The most important non-functional requirements for dependability of any Embedded Real-Time Safety Systems are safety, availability and reliability requirements. System architecture plays the primary role in achieving these requirements. Compliance with these non-functional requirements should be ensured early in the development cycle with appropriate considerations during architectural design. In this paper, we present an application of system architecture modeling for quantitative assessment of system dependability. We use probabilistic model checker (PRISM), for dependability analysis of the DTMC model derived from system architecture model. In general, the model checking techniques do not scale well for analyzing large systems, because of prohibitively large state space. It limits the use of model checking techniques in analyzing the systems of practical interest. We propose abstraction based compositional analysis methodology to circumvent this limitation. The effectiveness of the proposed methodology has been demonstrated using the case study involving the dependability analysis of safety system of a large Pressurized Water Reactor (PWR).

주파수 영역 민감도 방법을 이용한 집중 질량 구조물의 응답 해석 (Analysis of Response of Lumped Mass System Using Sensitivity Method in Frequency Domain)

  • 백문열;기창두
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.164-169
    • /
    • 1997
  • The aim of this paper is to present some results of sensitivity analysis in frequency domain. The sensitivity fonctions in frequency domain is not depend on the external excitation but depend on the frequency of the system's resonance. The sensitivity functions are determined as function of partial derivatives of system transfer functions taken with respect to system design parameters. The logarithmic sensitivity function is the dimensionless sensitivity funciton available, making it useful to compare the influence of various parameters on system variables. Two degree of fredom system is used to illustrate the procedure for sensitivity analysis proposed in this paper.

  • PDF

동장공정의 로보틱자동화를 위한 설계지원 시스템 (Computer aided design system for robotic painting line)

  • 서석환;조정훈;강대호
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.171-179
    • /
    • 1994
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implemen- tation details (such as robot selection, accessory design, and spatial layout) together with operation details, the computer aided design and analysis method should be sought. However, conventional robotic design systems and off-line programming systems cannot accommodate these inquiries in a unified fashion. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL (Simulation Package for Robotic Painting Line) users can design the painting objects (via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workpace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS).

  • PDF

지반굴착 흙막이공의 정보화시공 종합관리를 위한 역해석 프로그램 개발 (Development of Back Analysis Program for Total Management Using Observational Method of Earth Retaining Structures under Ground Excavation)

  • 오정환;조철현;김성재;백영식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 정보화시공 학술발표회
    • /
    • pp.103-122
    • /
    • 2001
  • For prediction of ground movement per the excavation step, observational results of ground movement during the construction was very different with prediction during the analysis of design. step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc. however accuratly numerical analysis method was applied. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until present, the measurement system restricted by ‘Absolute Value Management system’only analyzing the stability of present step was executed. So, it was difficult situation to expect the prediction of ground movement for the next excavation step. In this situation, it was developed that ‘The Management system TOMAS-EXCAV’ consisted of ‘Absolute value management system’ analyzing the stability of present step and ‘Prediction management system’ expecting the ground movement of next excavation step and analyzing the stability of next excavation step by‘Back Analysis’. TOMAS-EXCAV could be applied to all uncertainty of earth retaining structures analysis by connecting ‘Forward analysis program’ and ‘Back analysis program’ and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The application of TOMAS-EXCAV was confirmed that verifed the three earth retaing construction field by back analysis.

  • PDF