현대에도 일부 소외된 지역에서는 의료 인력의 부족으로 인해 위·중증 환자에 대한 치료가 지연되는 경우가 많다. 의료 데이터에 대한 분석을 자동화하여 의료 서비스의 접근성 문제 및 의료 인력 부족을 해소하고자 하는 연구가 계속되고 있다. 컴퓨터 비전 기반의 진료 자동화는 훈련 목적에 대한 데이터 수집 및 라벨링 작업에서 많은 비용이 요구된다. 이러한 점은 희귀질환이나 시각적으로 뚜렷하게 정의하기 어려운 병리적 특징 및 기전을 구분하는 작업에서 두드러진다. 이상 탐지는 비지도 학습 전략을 채택함으로써 데이터 수집 비용을 크게 절감할 수 있는 방법으로 주목된다. 본 논문에서는 기존의 이상 탐지 기법들을 기반으로, 흉부 X-RAY 영상에 대해 이상 탐지를 수행하는 방법을 다음과 같이 제안한다. (1) 최적 해상도로 샘플링된 의료 영상의 색상 범위를 정규화한다. (2) 무병변 영상으로부터 패치 단위로 구분된 중간 수준 특징 집합을 추출하여 그 중 높은 표현력을 가진 일부 특징 벡터들을 선정한다. (3) 최근접 이웃 탐색 알고리즘을 기반으로 미리 선정된 무병변(정상) 특징 벡터들과의 차이를 측정한다. 본 논문에서는 PA 방식으로 촬영된 흉부 X-RAY 영상들에 대한 제안 시스템의 이상 탐지 성능을 세부 조건에 따라 상세히 측정하여 제시한다. PadChest 데이터세트로부터 추출한 서브세트에 대해 0.705 분류 AUROC를 보임으로써 의료 영상에 대한 이상 탐지 적용의 효과를 입증하였다. 제안 시스템은 의료 기관의 임상 진단 워크플로우를 개선하는 데에 유용하게 사용될 수 있으며, 의료 서비스 접근성이 낮은 지역에서의 조기 진단을 효율적으로 지원할 수 있다.
대류권 오존은 전 세계적으로 인간과 생태계에 막대한 피해를 입히는 오염 물질이다. 국지적인 오존 문제는 발생 지역에서 바람에 의해 풍하 측으로 이동함에 따라 지역적, 전 지구적 문제가 되고 있다. 보다 효율적인 오존 모니터링을 위해서 연속적인 일중 관측이 가능한 정지궤도 위성을 이용하려는 시도가 있어왔다. 이 연구에서는 정지궤도 위성에서 관측될 대류권 오존의 연속적인 관측을 이용하여 대류권 오존 이동벡터(Tropospheric Ozone Movement Vector, TOMV) 산출을 세계 최초로 시도했다. 현재 정지궤도 위성을 이용한 대류권오존 산출물이 존재하지 않기 때문에 대기화학모델인 GEOS-Chem에서 산출된 대류권 오존 자료를 이용하였다. 산출된 오존의 이동 속도는 화학모델에 비해 높은 값이 나왔지만 오염의 이동의 방향은 매우 높은 일치성을 보여주었다. 제시된 알고리즘을 이용하면 오존의 유입 플럭스를 오존의 움직이는 속도와 방향을 이용하여 산출할 수도 있다. 이와 같은 결과는 오염물질의 이동분석에 널리 사용되는 역방향 궤적 방법의 대안으로써 오염물질의 모니터링과 예보에 보다 유용하게 사용될 수 있다. 이와 반대로 오존분포의 경계선이 불분명하면 TOMV 산출에 오차를 발생시킬 수 있기 때문에 이동에 대한 잘못된 정보를 줄 수 있는 것이 이 방법의 한계이다. 그럼에도 불구하고 TOMV 방법은 앞으로 활동하게 될 정지궤도 위성을 이용한 오염 모니터링과 예보에 진일보한 방향을 제시해줄 수 있을 것이다.
최근 이상기후로 인한 국지성호우가 잦아져 하천변 사회기반시설을 포함한 인적·물적 피해가 급증하고 있다. 본 연구에서는 해당 시설들의 침수 피해를 예측·방지하고자 기계학습 중 시계열자료에 특화된 LSTM(Long Short- term Memory)기법을 활용하여 수위 예측 알고리즘을 개발하였다. 연구대상지는 잠수교로 연구기간은 총 6년(2015년~2020년)의 6, 7, 8월로 3시간 후의 잠수교 수위를 예측하였다. 입력자료(Input data)는 잠수교 수위(EL.m), 팔당댐 방류량(m3/s), 강화대교 조위(cm), 서울시 트윗의 개수로 기존 연구에 주로 사용된 정형자료뿐만 아니라 워드클라우드를 통해 구축된 비정형자료도 함께 사용하여 상호 보완형 자료를 구축하고, 비정형자료 활용 유무의 비교·분석을 통해 비정형자료의 역할도 제시하였다. 잠수교의 수위 예측 시 상호 보완형의 자료가 정형자료만을 사용한 경우에 비해 예측 정확도가 향상하였는 데, 이는 인명 피해를 감소시킬 수 있는 보수적인 예/경보가 가능함을 알 수 있었다. 본 연구에서는 하천변 사회기반시설의 이용자 안전 및 편의 제공에 상호 보완형 자료의 사용이 보다 효과적이라 판단하였다. 향후에는 비정형자료의 종류를 추가하거나 입력자료의 세밀한 전처리를 통하여 더욱 정확한 수위 예측을 기대해본다.
현재 국내 건설업에서는 꾸준히 증가하는 건설재해를 예방하기 위해 다양한 정책적 노력과 연구가 활발하게 진행되고 있다. 기존 연구에서 건설재해 예방을 위해 개발한 예측 모델의 경우, 주로 정형데이터만을 활용하였기에 건설현장의 다양한 특성을 충분히 고려하지 못한 예측 결과가 도출되었다. 따라서, 본 연구에서는 정형데이터와 텍스트 형식의 비정형데이터를 동시에 활용하여 건설현장의 특성을 충분히 고려할 수 있는 기계학습 기반 건설재해 사전 예측 모델을 개발하였다. 본 연구는 기계학습을 위해 건설공사 안전관리 종합정보망(CSI)의 최근 3년간 건설재해 데이터 6,826건을 수집하였다. 수집된 데이터 중 정형데이터의 학습은 5가지 알고리즘의 성능 분석을 통해 Decision forest 알고리즘을 사용하였고 비정형데이터의 학습은 BERT 언어모델을 사용하였다. 정형 및 비정형데이터를 동시에 활용한 건설재해 예측 모델의 성능 비교 결과, 정형데이터만을 활용한 경우보다 약 20 % 향상된 95.41 %의 예측정확도가 도출되었다. 본 연구 결과, 비정형데이터를 동시에 활용함으로써 예측 모델의 효과적인 성능 향상을 확인하였으며, 보다 정확한 예측을 통한 건설재해 저감을 기대할 수 있다.
최근 20년간 산불의 빈도와 피해는 증가하는 경향이 있다. 산불에 효과적으로 대응하기 위해 산불 피해 규모와 범위 등 산불피해에 대한 정보를 잘 관리할 필요가 있다. 따라서 본 연구에서는 VIIRS 위성 영상을 이용하여 대형 산불의 피해 범위에 대한 정보를 빠른 주기로 추출하는 방법을 제시하고자 하였다. 이를 위해 2022년 3월 동해안 산불이 발생한 시기에 한반도를 관측한 VIIRS 자료를 확보하여 영상화하였다. VIIRS 영상은 ISODATA 기법을 활용하여 무감독 분류하였다. 이후 그 결과를 연소 지역과 화염의 위치의 관계를 이용하여 재분류하여 산불피해 범위를 추출하였다. 추출 결과는 검증 및 비교자료와 비교하였다. 비교 결과, 대형 산불의 경우 VIIRS 영상을 분류하여 추출한 것이 산불발생자료를 통해 추정한 것보다 더 정확한 것으로 나타났다. 본 연구를 통해 확인한 산불피해 범위 추출 방법은 산불 관리를 위한 피해 범위자료를 만드는 데 사용할 수 있다. 본 연구 방법을 자동화한다면 VIIRS 기반의 일별 산불피해 모니터링이 가능할 수 있을 것으로 기대된다.
Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.
본 연구에서는 머신 러닝을 통해 하중 유형에 따른 구간을 나누어 각 하중 유형에 강한 적층 각도 순서가 배치되는 PIC 설계 방법이 범퍼 빔에 적용되었다. 머신 러닝을 적용하기 위한 학습 데이터의 입력 값과 라벨은 각각 전체 요소 중 일부인 참조 요소의 좌표와 하중 유형으로 정의되었다. 좌표 값을 나타내는 방법인 2D 표현 방법과 3D 표현 방법을 비교하기 위하여 각각의 방법으로 학습 데이터 생성 및 머신 러닝 모델이 학습되었다. 2D 표현 방법은 유한요소 모델을 각 면으로 나누고 그에 따른 학습 데이터 생성 및 머신 러닝 모델을 학습시키는 방법이며, 3D 표현 방법은 유한요소 모델 전체에서 학습 데이터를 생성하여 하나의 머신 러닝 모델을 학습시키는 방법이다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통해 최적 값으로 튜닝되었으며, 튜닝 된 모델 중 k-NN 분류 방법이 가장 높은 예측률과 AUC-ROC로 나타났다. 그리고 2D 표현 방법과 3D 표현 방법 중 3D 표현 방법이 더 높은 성능을 보였다. 튜닝 된 머신 러닝 모델을 통해 예측된 하중 유형 데이터가 유한요소 모델에 매핑되었으며, 유한요소 해석을 통해 비교 검증되었다. 3D 표현 방법의 머신 러닝 모델로 설계된 PIC 방법이 강도 측면에서 더 우수함이 검증되었다.
본 연구에서는 지진시 옹벽의 수평변위량을 예측하는 기법을 개발하고자 옹벽과 지반의 진동시스템에 대한 운동 방정식을 유도하고 그로부터 도출되는 미분방정식은 Runge-Kutta-Nystrom 방법을 이용하여 해를 구하였다. 이러한 계산과정을 고려하여 지진시 옹벽의 수평변위를 얻는 해석과정을 프로그램화하였는데 해석기법의 핵심이 되는 변위-힘 관계를 탄성완전소성으로 모델링하는 계산 알고리즘을 제시하였다. 개발된 프로그램을 가정한 옹벽문제에 적용한 결과 해석을 통해 얻은 시간-변위관계와 시간-힘 관계 그리고 변위-힘 관계는 합리적인 결과를 보임을 알 수 있었다. 본 연구를 통해 개발된 해석기법에 의하면 진동시간이 경과함에 따라 옹벽에는 전면방향으로 변위가 발생되게 되는데 사이클당 변위량은 시간이 경과됨에 따라 일정한 값에 수렴됨을 알 수 있었다. 자연 진동주기에 따른 옹벽의 변위를 계산해 보았는데 한 개의 스프링을 적용한 경우의 스프링상수로부터 유도되는 자연 진동주기가 지진 진동주기와 같을 때 보다는 약간의 차이를 보일 때 변위가 가장 크게 계산되었다. 이러한 이유는 옹벽-지반 진동시스템이 강성이 다른 두 개의 스프링으로 모사되었기 때문으로 볼 수 있다.
문화유산의 현색(顯色)은 제작기법 해석, 보존처리 활용, 상태 모니터링의 중요한 기초 자료이다. 이 연구에서는 권응수 초상을 대상으로 디지털 색관리시스템 기반 색재현 과정을 체계적으로 정립하고, 문화유산 기록 및 보존에 적합한 현색 활용방안을 제안하였다. 전체적인 색재현 과정은 촬영 환경 세팅, 색기준차트 측정, 디지털 사진 촬영, 색보정, 색공간 설정 순으로 진행되었다. 연구 결과, 사진기 제조사 프로파일이 적용된 디지털 이미지는 현색과 비교하여 평균 𝜟10.1의 색차를 보인 반면, 디지털 색재현 이미지는 평균 𝜟1.1의 색차를 보여 현색과 거의 유사한 것을 알 수 있다. 이 결과는 디지털 사진 촬영 환경과 조건을 최적화했더라도 디지털 사진기 제조사의 보정 알고리즘에 의존할 경우 대상 문화유산의 현색 기록에 어려움이 있는 것을 의미한다. 따라서 문화유산은 RAW 이미지 기반의 색보정 및 색공간 설정을 통해 디지털 색재현이 필요하며, 이는 현색 기록화를 위해 매우 중요한 과정이다. 또한 디지털 색재현을 통한 현색 기록은 문화유산의 보존상태 평가와 보존처리 및 복원의 중요한 기초자료가 될 수 있으며, 퇴색 및 변색 현상의 모니터링을 위한 기준 데이터로 활용성이 높을 것으로 판단된다.
현행 면적평균 강수량 산정 방법인 티센 방법은 정확한 유역평균 강수량 산정에 있어 심각한 구조적 한계가 존재한다. 강수량계의 관측 정확도 외에, 강수량계 배치와 호우의 이동 방향에 따라서도 면적평균 강수량 산정에 오차가 발생할 수 있다. 유역이 작고 관측소 밀도가 희박한 경우 시뮬레이션 및 관측 사상 모두에서 티센 방법은 첨두 전후로 10분 사이에 유역평균 강수량이 계속 급격히 증감이 반복되는 특이한 경향 보였다. 그리고 티센 유역평균 강수량은 첨두 시점이 강우레이더와 다르게 나타났다. 유역이 작지만 관측소 밀도 비교적 높은 경우에는 전반적으로 티센 방법에 의해 톱니모양의 과대 첨두치의 경향은 나타나지 않았고 시간에 따른 변동이 유사하게 나타났다. 그러나 강우레이더 관측치와 지상 강수량계 관측치 유역평균 강수량 사이에 약 10분 정도의 연속적인 시차가 발생하였다. 강우레이더 유역평균 강수량의 지상보정 효과를 검토한 결과, 보정 후 면적평균 강수량이 보정 전 면적평균 강수량에 비해 오히려 상관이 낮게 나타나, 현행 강우레이더 지상보정 알고리즘 보정 효과가 높지 않은 것을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.