DOI QR코드

DOI QR Code

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method

지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석

  • Hwang, Seokhwan (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kang, Narae (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Yoon, Jung Soo (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 황석환 (한국건설기술연구원 수자원하천연구본부) ;
  • 강나래 (한국건설기술연구원 수자원하천연구본부) ;
  • 윤정수 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2022.10.25
  • Accepted : 2022.11.15
  • Published : 2022.12.31

Abstract

The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

현행 면적평균 강수량 산정 방법인 티센 방법은 정확한 유역평균 강수량 산정에 있어 심각한 구조적 한계가 존재한다. 강수량계의 관측 정확도 외에, 강수량계 배치와 호우의 이동 방향에 따라서도 면적평균 강수량 산정에 오차가 발생할 수 있다. 유역이 작고 관측소 밀도가 희박한 경우 시뮬레이션 및 관측 사상 모두에서 티센 방법은 첨두 전후로 10분 사이에 유역평균 강수량이 계속 급격히 증감이 반복되는 특이한 경향 보였다. 그리고 티센 유역평균 강수량은 첨두 시점이 강우레이더와 다르게 나타났다. 유역이 작지만 관측소 밀도 비교적 높은 경우에는 전반적으로 티센 방법에 의해 톱니모양의 과대 첨두치의 경향은 나타나지 않았고 시간에 따른 변동이 유사하게 나타났다. 그러나 강우레이더 관측치와 지상 강수량계 관측치 유역평균 강수량 사이에 약 10분 정도의 연속적인 시차가 발생하였다. 강우레이더 유역평균 강수량의 지상보정 효과를 검토한 결과, 보정 후 면적평균 강수량이 보정 전 면적평균 강수량에 비해 오히려 상관이 낮게 나타나, 현행 강우레이더 지상보정 알고리즘 보정 효과가 높지 않은 것을 알 수 있었다.

Keywords

Acknowledgement

이 논문은 행정안전부 기후변화대응 AI기반 풍수해 위험도 예측기술개발 사업의 지원을 받아 수행된 연구임(2022-MOIS61-003).

References

  1. Andreassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., and Lavabre, J. (2001). "Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models." Journal of Hydrology, Vol. 250, No. 1-4, pp. 206-223. https://doi.org/10.1016/S0022-1694(01)00437-1
  2. Berndt, C., and Haberlandt, U. (2018). "Spatial interpolation of climate variables in Northern Germany - Influence of temporal resolution and network density." Journal of Hydrology: Regional Studies, Vol. 15, pp. 184-202. https://doi.org/10.1016/j.ejrh.2018.02.002
  3. Beven, K.J. (2011). Rainfall-runoff modelling: The primer. John Wiley & Sons, Hoboken, NJ, U.S.
  4. Chaubey, I., Haan, C.T., Grunwald, S., and Salisbury, J.M. (1999). "Uncertainty in the model parameters due to spatial variability of rainfall." Journal of Hydrology, Vol. 220, No. 1-2, pp. 48-61. https://doi.org/10.1016/S0022-1694(99)00063-3
  5. Chen, C.W., Oguchi, T., Hayakawa, Y.S., Saito, H., and Chen, H. (2017). "Relationship between landslide size and rainfall conditions in Taiwan." Landslides, Vol. 14, No. 3, pp. 1235-1240. https://doi.org/10.1007/s10346-016-0790-7
  6. Di Piazza, A., Conti, F.L., Noto, L.V., Viola, F., and La Loggia, G. (2011). "Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy." International Journal of Applied Earth Observation and Geoinformation, Vol. 13, No. 3, pp. 396-408. https://doi.org/10.1016/j.jag.2011.01.005
  7. Dirks, K.N., Hay, J.E., Stow, C.D., and Harris, D. (1998). "High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data." Journal of Hydrology, Vol. 208, No. 3-4, pp. 187-193. https://doi.org/10.1016/S0022-1694(98)00155-3
  8. Edwards, K. (1972). "A note on the calculation of mean area precipitation by J. Akin." Journal of Hydrology, Vol. 51, pp. 171-173. https://doi.org/10.1016/0022-1694(72)90127-8
  9. Faures, J.M., Goodrich, D.C., Woolhiser, D.A., and Sorooshian, S. (1995). "Impact of small-scale spatial rainfall variability on runoff modeling." Journal of hydrology, Vol. 173, No. 1-4, pp. 309-326. https://doi.org/10.1016/0022-1694(95)02704-S
  10. Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., and New, M. (2008). "A European daily high resolution gridded data set of surface temperature and precipitation for 1950-2006." Journal of Geophysical Research: Atmospheres, Vol. 113, D20119.
  11. Horton, R. (1923). "Accuracy of areal rainfall estimates." Monthly Weather Review, Vol. 51, pp. 348-353. https://doi.org/10.1175/1520-0493(1923)51<348:AOARE>2.0.CO;2
  12. Kobold, M., and Suselj, K. (2005). "Precipitation forecasts and their uncertainty as input into hydrological models." Hydrology and Earth System Sciences, Vol. 9, No. 4, pp. 322-332. https://doi.org/10.5194/hess-9-322-2005
  13. Leander, R., Buishand, T., van den Hurk, B., and de Wit, M. (2008). "Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output." Journal of Hydrology, Vol. 351, No. 3-4, pp. 331-343. https://doi.org/10.1016/j.jhydrol.2007.12.020
  14. Li, J., and Heap, A.D. (2011). "A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors." Ecological Informatics, Vol. 6, No. 3-4, pp. 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003
  15. Ly, S., Charles, C., and Degre, A. (2011). "Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium." Hydrology and Earth System Sciences, Vol. 15, No. 7, pp. 2259-2274. https://doi.org/10.5194/hess-15-2259-2011
  16. Ly, S., Charles, C., and Degre, A. (2013). "Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review." Biotechnologie, Agronomie, Societe et Environnement, Vol. 17, No. 2, pp. 392-406.
  17. Moulin, L., Gaume, E., and Obled, C. (2009). "Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations." Hydrology and Earth System Sciences, Vol. 13, No. 2, pp. 99-114. https://doi.org/10.5194/hess-13-99-2009
  18. Oke, M.O., Martins, O., and Idowu, O.A. (2014). "Determination of rainfall-recharge relationship in River Ona basin using soil moisture balance and water fluctuation methods." International Journal of Water Resources and Environmental Engineering, Vol. 6, No. 1, pp. 1-11. https://doi.org/10.5897/IJWREE2013.0443
  19. Otieno, H., Yang, J., Liu, W., and Han, D. (2014). "Influence of rain gauge density on interpolation method selection." Journal of Hydrologic Engineering, Vol. 19, No. 11, 04014024.
  20. Pegram, G.G.S., and Clothier, A.N. (2001). "High resolution space - time modelling of rainfall: The "String of Beads" model." Journal of Hydrology, Vol. 241, No. 1-2, pp. 26-41. https://doi.org/10.1016/S0022-1694(00)00373-5
  21. Price, K., Purucker, S.T., Kraemer, S.R., Babendreier, J.E., and Knightes, C.D. (2014). "Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales.", Hydrological Processes, Vol. 28, No. 9, pp. 3505-3520. https://doi.org/10.1002/hyp.9890
  22. Schuurmans, J.M., and Bierkens, M.F.P. (2006). "Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model." Hydrology and Earth System Sciences Discussions, Vol. 3, pp. 2175-2208.
  23. Sinclair, S., and Pegram, G. (2005). "Combining radar and rain gauge rainfall estimates using conditional merging." Atmospheric Science Letters, Vol. 6, No. 1, pp. 19-22.
  24. Singh, V.P. (1997). "Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph." Hydrological Processes, Vol. 11, No. 12, pp. 1649-1669. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1649::AID-HYP495>3.0.CO;2-1
  25. Teegavarapu, R.S., Tufail, M., and Ormsbee, L. (2009). "Optimal functional forms for estimation of missing precipitation data." Journal of Hydrology, Vol. 374, No. 1-2, pp. 106-115. https://doi.org/10.1016/j.jhydrol.2009.06.014
  26. Thiessen, A.H. (1911). "Precipitation for large areas." Monthly Weather Review, Vol. 39, pp. 3082-1084.
  27. Vicente-Serrano, S.M., Saz-Sanchez, M.A., and Cuadrat, J.M. (2003). "Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature." Climate Research, Vol. 24, No. 2, pp. 161-180. https://doi.org/10.3354/cr024161
  28. Wagner, P.D., Fiener, P., Wilken, F., Kumar, S., and Schneider, K. (2012). "Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions." Journal of Hydrology, Vol. 464, pp. 388-400.
  29. Wiesner, C. (1970). Hydrometeorology. Chapman & Hall, London, UK.
  30. World Met Organisation (WMO) (1965). Guide to hydro-meteorological practices. No. 168, TP82. Geneva.
  31. Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I., and Hamada, A. (2009). "A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges." Sola, Vol. 5, pp. 137-140. https://doi.org/10.2151/sola.2009-035