• Title/Summary/Keyword: Amyloid β protein

Search Result 67, Processing Time 0.027 seconds

A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment

  • Ya-Jen Chiu;Yu-Shan Teng;Chiung-Mei Chen;Ying-Chieh Sun;Hsiu Mei Hsieh-Li;Kuo-Hsuan Chang;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.285-297
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid β (Aβ), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aβ folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aβ-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Study on the Effect of Sopungbosim-tang on Hypertension, Thrombosis and Brain damage (소풍보심탕이 고혈압, 혈전 및 뇌진탕에 미치는 영향)

  • Bae Kyung IL;Kim Dang Hee;Lee Yang Gu;Kim Yoon Sik;Seol In Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.245-256
    • /
    • 2002
  • This studt was investigated to prove the effect of SPBST on the hypertension, the thrombosis and the brain damage. The results were as follows; 1. SPBST affected the htpertension as adepressant, but insignificant. 2. SPBST decreased significantly dopamine, aldosterone but ineffective on the epinephrine, norepinephrine and renin activity. 3. SPBST increased the NO product but insignificant. 4. SPBST had a death suppression effect by 50% in pulmonary thrombosis inducement experiment and activated slightly on the fibrinolytic activity. 5. SPBST suppressed significantly platelet diminution and prolonged insignificantly PT and APTT. 6. On the measure of the blood flow rate induced by the thrombus, in vivo SPBST accelerated the blood flow rate, in vitro insignificant. 7. SPBST had no toxicity on the PC12 cell and B103 cell induced by amyloid β protein (-35) and a protective effect, in proportion to the density. 8. SPBST decreased significantly coma duration time in a Infatal dose of KCN and showed 50% of survival rate in a fatal dose. 9. SPBST decreased significantly ischemic area and edema incited by the MCA blood flow block. These results indicate that SPBST can be used in hypertension, the thrombosis, the brain damage, the ischemic cerebral infarction and the acute stage of the brain damage. Further study will be needed about the functional mechanism and etc.

Inhibition of Glycation End Products Formation and Antioxidant Activities of Ilex paraguariensis: comparative study of fruit and leaves extracts

  • Laura Cogoi;Carla Marrassini;Elina Malen Saint Martin;Maria Rosario Alonso;Rosana Filip;Claudia Anesini
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.338-347
    • /
    • 2023
  • Objectives: Ilex paraguariensis (Aquifoleaceae) is cultivated to produce "yerba mate". Due to its nutritional, energizing, hypoglycemic and antioxidant effects, it is used in the elaboration of food, pharmaceuticals, and cosmetics. The oxidative stress related to protein glycation and production of advanced glycation end products (AGEs) leads to the development of several diseases. The objective of this work was to compare the antioxidant and anti-AGEs activity of a decoction of fruits (F) and leaves (L). Methods: The antioxidant activity was assayed by the DPPH assay and the inhibition of egg yolk lipid peroxidation (ILP), and anti-AGEs activity, through the inhibition of the formation of fructosamine (IF), β-amyloid (Iβ), protein carbonylation (IC) and AGEs (IA). Polyphenols were quantified by HPLC. Results: Maximum response ± SEM: For F 0.01 ㎍/mL: IF = 42 ± 4%, IC = 17 ± 2% and for 10 ㎍/mL: IA = 38 ± 4%, Iβ = 67 ± 7%. For L 0.1 ㎍/mL: IF = 35 ± 2%, IC = 19 ± 2% and for 100 ㎍/mL: IA = 26 ± 3%, Iβ = 63.04 ± 2%. The DPPH IC50 = 134.8 ± 14 ㎍/mL for F and 34.67 ± 3 ㎍/mL for L. The ILP IC50 = 512.86 ± 50 ㎍/mL for F and 154.8 ± 15 ㎍/mL for L. By HPLC L presented the highest amounts of flavonoids and caffeoylquinic acids. F and L showed strong anti-AGEs activity, affecting the early stages of glycation at low concentrations and the late stages of glycation at high concentrations. The highest activity for both F and L was seen in the IF and Iβ. F presented the highest anti-AGEs potency. L presented the highest antioxidant potency, which was related to the highest content of polyphenols. Conclusion: The fruits of I. paraguariensis could be a source of antioxidant and anti-AGEs compounds to be used with medicinal purposes or as functional food.

Cognitive Improvement Effects of Krill Oil in a Scopolamine-induced Mice Model (Scopolamine 유도 인지 저하 마우스 모델에서 크릴 오일의 인지 개선 효과)

  • Hye-Min Seol;Jeong-Ah Lee;Mi-Sun Hwang;Sang-Hoon Park;Hyeong-Soo Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.509-519
    • /
    • 2024
  • A previous study showed that krill oil improved recognition and memory through anti-oxidative effects in an amyloid β model, but the authors noted that further investigations are necessary of alterations to neurotransmitters' states and of serum lipid profile improvements related to serum lipid peroxidation. Accordingly, in this study, ICR mice were pre-treated intraperitoneally with scopolamine prior to induced neurotransmission impairment, and the effects of krill oil provision on their capabilities of cognition were tested by performing a passive avoidance test (PAT), water maze test (WMT), and novel object recognition test. Then, parameters including the acetylcholine (ACh) concentration, acetylcholinesterase activity (AChE), lipid peroxidation, serum lipid levels, and nerve cell proliferation were investigated. The results showed that krill oil improved the mice's abilities in recognition and memory as the times taken to complete the PAT and WMT were reduced compared to the mice in a comparison scopolamine-treated group. Krill oil produced an increased concentration of Ach, and this was accompanied by a decrease in AChE. As shown in a scopolamine-treated SH-SY5Y cell line, krill oil reduced the activity of AChE. Moreover, the suppression of lipid peroxidation-reflected in the finding that malondialdehyde was decreased with krill oil provision-is speculated to affect the recorded serum triglyceride and cholesterol decreases and LDL cholesterol increase. The intake of krill oil was also found to produce an improvement in brain-derived neurotrophic factor expression by stimulating the activation of cyclic AMP response element binding protein in the brain tissue. Overall, the current results imply that the provision of krill oil raises the cognition and memory by elevating neurotransmitters and by improving the serum lipid profile and nerve cell proliferation, which occur as lipid peroxidation is suppressed in the brain tissue.

Analysis of inflammatory markers in blood related with the occurrence of subcutaneous abscesses in goats (염소의 피하농양 발생에 따른 혈액 내 염증지표 분석)

  • Ku, Ji-yeong;Park, Jun-Hwan;Kim, Seo-Ho;Cho, Yong-il;Kim, Chan-Lan;Cha, Seung-Eon;Shin, Gee-Wook;Park, Jinho
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.47-54
    • /
    • 2022
  • Subcutaneous abscesses, which occur mainly in goats and sheep, are lymph node abscesses caused by Corynebacterium pseudotuberculosis infection, and are divided into internal, external, and mixed types depending on the type of occurrence. While diagnostic methods for subcutaneous abscesses have been continuously studied, research reports for effective treatment and management of subcutaneous abscesses are inadequate. Therefore, this study was conducted to determine the changes in biometric information related to the inflammatory markers of goats induced by subcutaneous abscesses by infection with C. pseudotuberculosis. For this, hematological tests, analysis of inflammatory indicators, and analysis of serum proteins through electrophoresis separation of goats with healthy goats and goats inoculated with C. pseudotuberculosis to induce subcutaneous abscesses were compared and analyzed by date, and the differences and characteristics were identified periodically. As a result, in goats induced with subcutaneous abscesses, anemia findings related to a rapid decrease in red blood cell (RBC), hematocrit (HCT), and hemoglobin (Hb) were observed, and a significant increase in inflammatory cells expressed in total white blood cell (WBC), neutrophil, and monocytes was observed. And the levels of acute phase protein (APP) such as fibrinogen, haptoglobin, and serum amyloid A (SAA) were observed to increase rapidly immediately after infection. In addition, in the results of electrophoretic analysis of serum proteins, it was observed that the levels of α-globulin and β-globulin were significantly increased in goats with subcutaneous abscesses. That is, when looking at these changes, it was found that the systemic inflammatory response of goats was rapidly induced immediately after infection with the C. pseudotuberculosis pathogen. Through this study, it was possible to identify changes in the biomarkers of goats with subcutaneous abscesses, which had not been reported. Furthermore, these analyzed data are thoughts to be of great help in identifying, treating, and managing the goats of subcutaneous abscesses.

Bioactive compounds in food for age-associated cognitive decline: A systematic review (인지기능 개선을 위한 식품유래 생리활성소재에 대한 체계적 문헌고찰)

  • Kang, Eun Young;Cui, Fengjiao;Kim, Hyun Kyung;Go, Gwang-woong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.278-289
    • /
    • 2021
  • The rapid aging of society has led to a surge in cognitive dysfunction in the elderly. As there is limited evidence for the development of dementia in medicine, a shift in focus on prevention strategies using bioactive compounds in food is required. This systematic review evaluated the effects of various bioactive compounds on age-associated cognitive decline. The literature was searched for terms related to bioactive compounds in cognitive decline and article selection was limited to clinical randomized controlled trials for a single bioactive compound. We identified 21 studies that evaluated the strength of the evidence. ω-3 fatty acids and vitamin B presented a strong evidence level, whereas vitamin D and E, anserine/carnosine, and chromium were defined as having moderate levels of evidence. ω-3 fatty acids relieved cognitive decline and reduced amyloid β-related protein accumulation. Vitamin B decreased homocysteine levels, which is accompanied by alleviation of cognitive function. In conclusion, ω-3 and vitamin B have the potential to improve age-associated cognitive decline.