• Title/Summary/Keyword: Amount of premixed combustion

Search Result 48, Processing Time 0.019 seconds

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

The Application of Dump Combustor for Evaluation of DPF(Diesel Particulate Filter) System (DPF 성능 평가를 위한 Dump Combustor의 활용)

  • Nam, Youn-Woo;Lee, Won-Nam;Oh, Kwang-Chul;Lee, Chun-Beom
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.98-103
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas compostion and flow rate of exhaust gas are important parameters in DPF evaluation, especially regeneration process. Engine dynamometer and degment tester are generally used in DPF evaluation so far. But these test method couldn't reveal the effect of various parameters on real DPF, such as O2 concentration, amount of soot and exhaust gas temperature. This research has studied the possibility using dump combustor that used to take an approach lean premixed combustion in gas turbine for a DPF power and optimized. It is possible that utilize the system as DOC (Diesel Oxidation Catalyst) and SCR(Selective Catalytic Reduction) assessments test as well as DPF evaluation

  • PDF

The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents (고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가)

  • Lee, Jong-Tae;Lim, Yun-Sung;Kim, Hyung-Jun;Lee, Seong-Wook;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

Combustion Characteristics of Methane/Oxygen Gas in Pre-mixed Swirl Flame (메탄/순산소 예혼합 화염의 선회 특성)

  • Choi, Won-Seok;Kim, Han-Seok;Cho, Joo-Hyeong;Kim, Yong-Mo;Ahn, Kook-Young;Woo, Ta-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1979-1983
    • /
    • 2008
  • The effects of carbon dioxide addition to oxygen have been investigated with swirl-stabilized premixed methane flame in a laboratory-scale pre-mixed combustor. The methane fuel and oxydant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of carbon dioxide addition to the methane fuel and different swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensity of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of dilution gas in the reaction zone.

  • PDF

The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine (디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향)

  • Park, Cheol-Woong;Cho, Jun-Ho;Oh, Seung-Mook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.

NOx and CO Emission Characteristics of Porous Inert Medium Burner (다공물질 연소기의 NOx 및 CO 배출 특성)

  • 임인권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.559-567
    • /
    • 1995
  • The combustion process within a porous inert medium (PIM) burner is numerical studied. A detailed chemical reaction scheme including thermal and prompt NO$_{x}$ reactions is used to predict the formation and destruction of pollutants such as NO$_{x}$ and CO. The reaction paths for NO$_{x}$ formation are divided to quantify the amount of NO$_{x}$ formed through thermal NO$_{x}$ reaction or through prompt NO$_{x}$ reaction. Emission index is calculated to compare the actual mass of NO$_{x}$ or CO produced through the combustion of unit mass of fuel. It is found NO formation in PIM burner is confined in flame zone and formation is suppressed due to heat loss at down-stream of the flame. Higher production of NO through prompt NO reaction path is observed due to the higher concentration of fuel derivative species and its higher diffusion at flame front. For all equivalence ratios, CO emission within PIM burner is lower than that from the one-dimensional freely-propagating flame. PIM burner flame has better NO$_{x}$ emission index from .psi. = 0.75 to .psi. = 1.1. to .psi. = 1.1.

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

An Experimental Study on Emission Characteristics of a Semi-Bunsen Type Gas Burner (가스보일러용 세미 분젠형 버어너의 배기 특성 연구)

  • Jurng, J.S.;Park, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.353-358
    • /
    • 1995
  • The emission characteristics of a semi-Bunsen type burner for gas boilers were studied experimentally. The experimental results reveal that nitric oxide emission increases with fuel flow rate. It is linearly proportional to total fue flow rate at a small amount of fuel up to 0.4 liters per minute. It does not change significantly within the range of fuel flow rate from 0.4 to 1.2 liters per minute per nozzle and increases at large fuel flow rate. The carbon monoxide emission reveals to be dependent upon the fuel flow rate per each nozzle and the number of fuel injection nozzles. Diameter of an injection nozzle could have an effect on the emission characteristics of this type of burners. However, there is no marked change in the nitric oxide emission if the total fuel flow rate is same with different nozzle sizes.

  • PDF

Combustion Characteristics of Hydrogen/Methane gas in Pre-mixed Swirl Flame (메탄/수소 혼합 가스의 예혼합 선회 연소특성)

  • Kim, Han-Seok;Lee, Young-Duk;Choi, Won-Seok;Ahn, Kook-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.276-282
    • /
    • 2008
  • The effects of hydrogen enrichment to methane have been investigated with swirl-stabilized premixed hydrogen-enriched methane flame in a laboratory-scale pre-mixed combustor. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of hydrogen addition to the methane fuel and different swirl strengths. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using micro-thermocouple, particle image velocity meter (PIV) and chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in ignition energy from recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The higher combustibility of hydrogen makes reaction faster, raises the temperature of reaction zone and expands the reaction zone, consequently recirculation flow to reaction zone is reduced. The temperature of reaction zone increases with hydrogen addition even though the adiabatic flame temperature of the mixture gas decreases with increase in the amount of hydrogen addition in this experiment condition because the higher combustibility of hydrogen reduces the cooler recirculation flow to the reaction zone.