• Title/Summary/Keyword: Amount of fertilizer

Search Result 1,083, Processing Time 0.028 seconds

Mineralization of soil nitrogen and some characteristics of acid hydrolizable organic nitrogen of Korean paddy soils (한국답토양(韓國畓土壤)에서 토양질소(土壤窒素)의 유효화(有効化) 및 산가수분해성유기태질소(酸加水分解性有機態窒素)에 관(關)한 특징(特徵))

  • An, Sang-Bai;Kono, Mitsiyoshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 1977
  • The mineralization of soil nitrogen, amino acid composition of acid hydrolizable organic nitrogen of four Korean soils were investigated in comparison with four Japanese (Hokuriku district) soils which is similar in nitrogen content but different in characteristics of clay minerals. The mineralization rate and pattern were quite different between Korean and Japanese soils; Korean soils were low in amount of mineralized nitrogen but porduced much ammonium nitrogen during the later stage of incubation. In Korean soils the ratio of acid hydrolizable nitrogen to total; especially ${\alpha}$-amino nitrogen and hydrolizable ammonium nitrogen were low while hexosamine content was considerablly high (greater than 10%) In all soils the amount of mineralized nitrogen showed significant positive correlation with ammonium nitrogen and ${\alpha}$-amino nitrogen in acid hydrolizate. The amino acid composition of acid hydrolizate of paddy soils showed higher in basic amino acids and lower in acidic amino acids than those of up land soils (humic volcanic ash soil) from both countries. Alanine content was low in Korean soils. Proline showed increasing trend with nitrogen content but aspartic acid decreasing.

  • PDF

Composition of Crushed Oyster Shell and its Application Effect on Vegetables (굴껍질분(紛)의 화학성(化學性) 및 작물(作物)에 대한 시용효과(施用效果))

  • Kim, Jong-Gyun;Lee, Han-Saeng;Cho, Jea-Gyu;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.350-355
    • /
    • 1995
  • This study was conducted to use oyster shells, which have caused environmental problems in the coastal of Korea, as an agricultural material after processing. Physico-chemical components and neutralizing amount on the Ihyun silt loam of crushed oyster shell and slaked lime were examined. In field experiment, the properties of the soil, growth and yield of lettuce, cabbage, spinach, onion, red pepper and soybean were examined by the treatments of the shell(3.68ton/ha) or the lime (2.76ton/ha) with a randomized block design. Particle size of crushed oyster shell consisted of 73.4% of 1~60mesh and 26.6% larger then 61 mesh and contents of CaO, OM, and $P_2O_5$, etc. were 55.5%, 1.3%, and 0.29%, respectively. The requirement of the shell to neutralize the soil was 130~135% of the lime, but after 24months, it was the same. The application of the shell increased the contents of available $P_2O_5$ and $SiO_2$ exchangeable Ca in used soil. The shell tratment increased the leaf height, leaf width, etc. of the examined plants, and the yields 6~154% according to examined plants, as compared with the nonliminged, indicating that the shell possesses a great potential as an agricultural material with the same effectiveness as the lime.

  • PDF

Effect of N Application Rate on Fixation and Transfer from Vetch to Barley in Mixed Stands. (질소시용수준이 베치-보리 혼파 사초의 질소고정 및 베치에서 보리로 질소이동에 미치는 영향)

  • Lee Hyo Won;Kim Won Ho;Park Hyung Soo;Ko Han Jong;Kim Su Gon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • With recent interest organic farming the use of legumes including vetch and clover to provide N to adjacent crops is increasing in Korea. In the present studies, we conducted a trial to investigate the effects of the application of N rate on nitrogen fixation and transfer from vetch to barley in mixed stands. The experiment was arranged in a randomized complete block design with three replications. Four different N rates(0, 75, 113 and 150/ha) was used and vetch+barley was broadcasted manually on 1.5 $\times$2 m plot in Oct. 2001. Half of urea and K$_{2}O, 200 Phosphate and 75 kg potash per ha were applied as basal dressing md half of N md 75 potash were used for topdressing to soil surface on MarctL 2002. The equivalent of 1kg ha$^{-1}$ at($^{15}$NH$_{4}$)$_{2}$SO$_{4}$ solution at 99.8 atom $\%$$^{15}$N excess was applied to the microplot in mid April. Forage was harvested from each plot at ground level and separated into barley and vetch. Total N content and It values of samples were determined using a continuous flow stable isotope ratio mass spectrometry(IsoPrime-EA. Micromass, UK.). The percentage of legume H fixed from atmospheric N2 were 95.0, 93.8, 94.4 and $84.8\%$ with increment of N levels. The percentage of N transfer from vetch to barley by N-difference method with increment of N fertilizer were from 58 to$49\%$ while 39 to $23\%$ in $^{15}$N-dilution method. The amount of transfer from vetch to barley were 87 to 68 kg/ ha with N level by N-difference moth여 and 58 to -56/ha with N application levels by $^{15}$N dilution method. The amount of nitrogen fixation per ha were from 150 kg / ha to 219 kg / ha by different method, but on the other side 49 to 105kg/ha by N$^{15}$-dilution.

Effects of Nitrogen Fertilization on Physiological Characteristics and Growth of Populus sibirica Seedlings in a Semi-arid Area, Mongolia (몽골 반건조지에서의 질소 시비가 Populus sibirica 묘목의 생리 및 생장 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kang, Hoduck;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • This study was conducted to investigate the effects of nitrogen fertilization on physiological characteristics and growth of Populus sibirica seedlings in a semi-arid area, Mongolia. 2-year-old P. sibirica seedlings were planted in May, 2015 with applications of urea 5 g (N1), 15 g (N2), 30 g (N3) and ammonium sulfate 33 g (NS; same nitrogen amount with N2) to each seedling. Chlorophyll contents were significantly different among treatments in August, but not in June and July. The lower chlorophyll contents in August than those in June and July might be related to leaf senescence. In June and July, net photosynthetic rate was higher in NS and N2 than in the control. Unlike the tendency of photosynthesis, transpiration rate was highest in N2, but lower in NS than in any other nitrogen treatments. Relative growth rate of root collar diameter was significantly higher only in NS than in the control and it of height did not differ among treatments. Leaf area in nitrogen treatments was not significantly different from that in the control. Ammonium sulfate seemed to be more suitable fertilizer than urea for the early growth of P. sibirica seedlings in the study site. However, as the effects of urea and ammonium sulfate on soils and seedlings were different, further studies would be necessary to determine the optimal amount of ammonium sulfate.

Cultural Studies on Pearl Barley (율무재배(栽培)에 관(關)한 연구(硏究))

  • Choi, Chang-Yoel;Jo, Jai-Seong
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.1
    • /
    • pp.31-37
    • /
    • 1976
  • These studies were carried out to find out the most reasonable planting density and :adequate amount of nitrogen fertilizer for the pearl barley. and results obtained are summarized as follows; 1. The planting densities affected neither the heading date nor the maturing date of p. earl barley. 2. The planting density of 90cm X (30cm+30cm) was the most adequate for high yield and that of $40cm{\times}20cm$ which was the most densely planted plot in this experiment showed the lowest grain yield. 3. The height and weight of stem were significantly increased by increased fertilization of nitrogen. 4. The highest grain yield per 10a (613kg/10a) was resulted from the nitrogen fertilization of 20kg/10a. and the plot of which amount of nitrogen fertilization was 15kg/10a showed the grain yield of 603kg per 10a. But there was not significant difference between two plots mentioned above. 5. Single plant per hill was the most effective for high yield of pearl barley and 3 plants per hill dropped the grain yield of 28.4%.

  • PDF

Characteristics of Nutrient Uptake and Stubble Regrowth of Grain Sorghum in Plastic Film House (비닐하우스 재배 수수의 그루터기 재생 및 양분흡수 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Chang-Yeong;Hwang, Jae-Bog;Choi, Young-Dae;Jeon, Seung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.992-997
    • /
    • 2012
  • This study was conducted to get the basic information for absorb enhancement of accumulated soil nutrients in plastic film house. The grain sorghum (Sorghum bicolor L.) was sowing in plastic film house which soil nutrient accumulated moderately and was cutting at major growth period of sorghum. We were analyzed the regrowth pattern, biomass due to cutting time and amount of plant nutrient of grain sorghum. The obtained results were as follows. The heading date after cutting of sorghum in plastic film house was came to about 35 days. The accumulated of plant height were the longest as 379.4 cm in cutting at milk stage. The total biomass of sorghum in cutting at heading stage was 1.73 ton $10a^{-1}$ in cutting at heading stage. The high grain yields were produced with non-cutting and cutting at 10 leaves stage as 75~113 kg $10a^{-1}$ but the lowest grain yields were the cutting plots at booting stage as below 24 kg $10a^{-1}$. The content of nutrient in sorghum plant was low as progress of growth. The concentrations in aboveground sorghum due to plant parts was in order to leaves > panicle > stalk. The nitrogen content of sorghum was 0.6~0.7% in stalk, 1.5~1.6% in panicle and 1.8~2.3% in leaves. The amount of nutrient absorbed in sorghum was 4.2 kg $10a^{-1}$ in nitrogen, 1.7 kg $10a^{-1}$ phosphorus and 7.7 kg $10a^{-1}$ in potassium and the absorbing different by cutting time in order to booting > non-cutting > panicle formation ${\geq}$ milk ripe > 10 leaves stage.

Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System (SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석)

  • Yoo, Dongsun;Ahn, Jaehun;Yoon, Jongsuk;Heo, Sunggu;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

Study on the Effects of the Phosphate and Potassium Fertilizer Amount on the Mulberry Yields (숙전에서의 인산및 가리시비량이 뽕잎수량에 미치는 영향)

  • 정태암;박광준;이원주
    • Journal of Sericultural and Entomological Science
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 1978
  • The effect of phosphorus and potassium on the leaf yielding from the mulberry field was surveyed, designing four application levels of potassium and phosphorus respectively; Po, P$^1$/$_2$ and P$_1$and P$_2$ for phosphorus, K$^1$/$_3$, K$^2$/$_3$, K$_1$and K$_2$for potassium after amount of nitrogen was constant at 25kg/l0a. The standard application of three elements is at 25-11-15kg/l0a. No application only showed significance among the treatments in the 3rd year autumn. However there is no significance, ever decreasing 2.7∼5.9% of leaf yielding in application of potassium and 6.4∼11.5% of leaf yielding in application of phosphorus. There is also no increase of leaf yielding even with application of double quantity of phosphorus and potassium. Potassium in soil was considerably fluctuated, while fluctuation of phosphorus is very low. With these results, it was evident that the conventional application level for phosphorus (11kg/l0a) is reasonable and for potassium may be cut down to 5∼10kg/l0a without showing any significance for the successive three years.

  • PDF

Fertilizing Effects of Swine Compost Fermented with Sawdust on Mixed Pastures (혼파초지에 대한 톱밥발효돈분의 시용효과)

  • Shin, J. Soon;Cho, Young-Mu;Lee, Hyo-Ho;Yoon, Sea-Hung;Park, Geun-Je;Choi, Ki-Chun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • Experiment was carried out to find the fertilizing effects of 8 different application rates of swine compost fermented with sawdust(SCS) including Chemical fertilizer(CF) on forage yield and soil chemical characteristics of mixed pastures sown in Sep. 1993 at National Livestock Research Institute, RDA., in Suwon during low years. It was arranged in a randomized complete block design with three replicates. Dry matter yield were shown at similar among treatments except Control and $50\%$ SCS of standard amount plot. In botanical composition, the legume and weeds percentages of each treatment were increased as advancing year. The final year's legume percentage were high in line with SCS fertilizing plots($39\%{\sim}43\%$), SCS + CF plots($30\%{\sim}41\%$) and CF plot($32\%$). In productions of TDN, NE and crude protein yield, SCS or SCS($75\%$) + CF($25\%$) were nearly same comparing those of CF, respectively. Phosphate, potassium, magnesium contents and K/(Ca + Mg) except calcium contents of those SCS fertilizing plots in plant were generally high with comparing CF. Those contents were proportional according to the fertilizing amount These result indicate the possibility to substitute chemical fertilizer for SCS($75\%$, 25ton/ha) + CF, $25\%$) as manure-N 210 kg/ha, but might be considered accumulation phosphate in the soil.

A study on the characteristic of livestock resources run-off from land for agricultural crop (축분자원화물의 작물재배 농지 유출특성에 관한 연구)

  • Han, Gi-Bong;Lee, Young-Sin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.74-83
    • /
    • 2011
  • In this study, to estimate the transforming (runoff and leachate) rate of the livestock resources applying to agricultural crop land as fertilizer, field scale test was conducted and the results were obtained as follows. According to results of livestock resources effect to agricultural land, the total amount of harvested crop from testing bed was $0.437kg/m^2$, and nutrient contents were $0.024{\pm}0.006%$ and $0.020{\pm}0.004%$ for N and P, respectively. Dynamics of contaminants in the livestock resources to be supplied to agricultural crop land showed that concentrations were continuously decreased to the level of blank test bed until 60 days of planting. The amount of runoff from farm land showed the tendency to increase according to the increase of rainfall intensity. Run-off ratio of 10mm/h rainfall intensity for agricultural land showed that each contaminant concentration was increased due to rainfall intensity with 8 mm/h, specifically SS showed the highest increase.