DOI QR코드

DOI QR Code

Effects of Nitrogen Fertilization on Physiological Characteristics and Growth of Populus sibirica Seedlings in a Semi-arid Area, Mongolia

몽골 반건조지에서의 질소 시비가 Populus sibirica 묘목의 생리 및 생장 특성에 미치는 영향

  • Chang, Hanna (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kang, Hoduck (Department of Biological and Environmental Science, Dongguk University) ;
  • Akhmadi, Khaulenbek (Division for Desertification Studies, Institute of Geography & Geoecology) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 장한나 (고려대학교 대학원 환경생태공학과) ;
  • 한승현 (고려대학교 대학원 환경생태공학과) ;
  • 강호덕 (동국대학교 바이오환경과학과) ;
  • ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Received : 2017.01.04
  • Accepted : 2017.02.15
  • Published : 2017.03.31

Abstract

This study was conducted to investigate the effects of nitrogen fertilization on physiological characteristics and growth of Populus sibirica seedlings in a semi-arid area, Mongolia. 2-year-old P. sibirica seedlings were planted in May, 2015 with applications of urea 5 g (N1), 15 g (N2), 30 g (N3) and ammonium sulfate 33 g (NS; same nitrogen amount with N2) to each seedling. Chlorophyll contents were significantly different among treatments in August, but not in June and July. The lower chlorophyll contents in August than those in June and July might be related to leaf senescence. In June and July, net photosynthetic rate was higher in NS and N2 than in the control. Unlike the tendency of photosynthesis, transpiration rate was highest in N2, but lower in NS than in any other nitrogen treatments. Relative growth rate of root collar diameter was significantly higher only in NS than in the control and it of height did not differ among treatments. Leaf area in nitrogen treatments was not significantly different from that in the control. Ammonium sulfate seemed to be more suitable fertilizer than urea for the early growth of P. sibirica seedlings in the study site. However, as the effects of urea and ammonium sulfate on soils and seedlings were different, further studies would be necessary to determine the optimal amount of ammonium sulfate.

본 연구는 몽골 반건조지에서 질소 시비가 Populus sibirica 묘목의 생리적 특성 및 생장에 미치는 영향을 파악하고자 수행되었다. 2015년 5월, 2년생 P. sibirica 묘목을 식재하고 처리구별로 묘목 당 요소 5 g (N1), 15 g (N2), 30 g (N3) 및 N2와 같은 질소량인 황산암모늄 33 g (NS) 등을 시비하였다. 잎의 엽록소 함량은 6월과 7월에 처리구 간 유의한 차이를 보이지 않았다. 그러나 엽록소 함량이 8월에는 처리구 간 차이를 보였으며 6월과 7월에 비하여 낮게 나타났는데, 이는 잎의 노화에 의한 것으로 판단된다. 6월과 7월의 순광합성률은 N2와 NS 처리구에서 대조구보다 높게 나타났다. 6월의 증산 속도는 순광합성률의 경향과 달리 N2 처리구에서 NS 처리구보다 유의하게 높게 나타났다. 한편, 묘목의 근원경상대생장률은 NS 처리구에서만 대조구보다 유의하게 높았고, 수고 상대생장률은 처리구간 유의한 차이를 보이지 않았다. 질소 시비에 따른 엽면적 차이는 처리구 간에 유의성을 보였으나, 대조구와 각 질소 처리구 간에는 유의한 차이가 없었다. 본 연구지에서 P. sibirica 묘목의 초기 생육 증진을 위하여 요소보다 황산암모늄을 시비하는 것이 더 적합한 것으로 보인다. 요소와 황산암모늄 시비가 토양 및 묘목에 미치는 영향이 다르므로 몽골에서 황산암모늄의 적정 시비량 산정을 위한 추가 연구가 필요한 것으로 판단된다.

Keywords

References

  1. Archibald, S. and Bond, W.J. 2003. Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102(1): 3-14. https://doi.org/10.1034/j.1600-0706.2003.12181.x
  2. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S. and Davison, A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2): 85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  3. Batjargal, Z. 1997. Desertification in Mongolia. pp. 107-113. In: Agricultural Research Institute of Iceland (Ed.). Proceedings of an international workshop on rangeland desertification. Agricultural Research Institute of Iceland. Keldnaholt, Iceland.
  4. Berthrong, S.T., Jobbagy, E.G. and Jackson, R.B. 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications 19(8): 2228-2241. https://doi.org/10.1890/08-1730.1
  5. Canham, C.D., Kobe, R.K., Latty, E.F. and Chazdon, R.L. 1999. Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia 121(1): 1-11. https://doi.org/10.1007/s004420050900
  6. Cechin, I. and Fumis, T.F. 2004. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Science 166(5): 1379-1385. https://doi.org/10.1016/j.plantsci.2004.01.020
  7. Chang, S.X. 2003. Seedling sweetgum (Liquidambar styraciflua L.) half-sib family response to N and P fertilization: growth, leaf area, net photosynthesis and nutrient uptake. Forest Ecology and Management 173(1): 281-291. https://doi.org/10.1016/S0378-1127(02)00007-5
  8. Demarez, V. 1999. Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model. International Journal of Remote Sensing 20(5): 879-894. https://doi.org/10.1080/014311699212975
  9. Dordas, C.A. and Sioulas, C. 2008. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Industrial Crops and Products 27(1): 75-85. https://doi.org/10.1016/j.indcrop.2007.07.020
  10. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78(1): 9-19. https://doi.org/10.1007/BF00377192
  11. Fenn, L.B. and Kissel, D.E. 1973. Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: I. General theory. Soil Science Society of America Journal 37(6): 855-859. https://doi.org/10.2136/sssaj1973.03615995003700060020x
  12. Fischer, R.A. and Turner, N.C. 1978. Plant productivity in the arid and semiarid zones. Annual Review of Plant Physiology 29(1): 277-317. https://doi.org/10.1146/annurev.pp.29.060178.001425
  13. Fisher, F.M., Zak, J.C., Cunningham, G.L. and Whitford, W.G. 1988. Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan Desert. Journal of Range Management 41(5): 387-391. https://doi.org/10.2307/3899572
  14. Garcia, C., Hernandez, T., Roldan, A., Albaladejo, J. and Castillo, V. 2000. Organic amendment and mycorrhizal inoculation as a practice in afforestation of soils with Pinus halepensis Miller: effect on their microbial activity. Soil Biology and Biochemistry 32(8): 1173-1181. https://doi.org/10.1016/S0038-0717(00)00033-X
  15. Guo, H.X., Liu, W.Q. and Shi, Y.C. 2006. Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica 44(1): 140-142. https://doi.org/10.1007/s11099-005-0170-3
  16. Hak, R., Rinderle-Zimmer, U., Lichtenthaler, H.K. and Natr, L. 1993. Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves. Photosynthetica 28: 151-159.
  17. Hiscox, J.D. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57(12): 1332-1334. https://doi.org/10.1139/b79-163
  18. Hsiao, T.C. 1973. Plant responses to water stress. Annual Review of Plant Physiology 24(1): 519-570. https://doi.org/10.1146/annurev.pp.24.060173.002511
  19. Jigjidsuren, S. and Oyuntsetseg, S. 1998. Pastureland utilization problems and ecosystem. Ecological Sustainable Development 2: 206-212.
  20. Jung, Y., Yoon, T.K., Han, S., Kang, H., Yi, M.J. and Son, Y. 2014. Effects of soil amendments on survival rate and growth of Populus sibirica and Ulmus pumila seedlings in a semi-arid region, Mongolia. Journal of Korean Forestry Society 103(4): 703-708. (In Korean) https://doi.org/10.14578/jkfs.2014.103.4.703
  21. Kassas, M. 1995. Desertification: a general review. Journal of Arid Environments 30(2): 115-128. https://doi.org/10.1016/S0140-1963(05)80063-1
  22. Kathju, S., Burman, U. and Garg, B.K. 2001. Influence of nitrogen fertilization on water relations, photosynthesis, carbohydrate and nitrogen metabolism of diverse pearl millet genotypes under arid conditions. The Journal of Agricultural Science 137(03): 307-318.
  23. Knops, J.M. and Reinhart, K. 2000. Specific leaf area along a nitrogen fertilization gradient. The American Midland Naturalist 144(2): 265-272. https://doi.org/10.1674/0003-0031(2000)144[0265:SLAAAN]2.0.CO;2
  24. Li, S.X., Wang, Z.H. and Stewart, B.A. 2013. Responses of crop plants to ammonium and nitrate N. Advances in Agronomy 118: 205-397.
  25. Mauromicale, G., Ierna, A. and Marchese, M. 2006. Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica 44(1): 76-82. https://doi.org/10.1007/s11099-005-0161-4
  26. Nielsen, D.C. and Halvorson, A.D. 1991. Nitrogen fertility influence on water stress and yield of winter wheat. Agronomy Journal 83(6): 1065-1070. https://doi.org/10.2134/agronj1991.00021962008300060025x
  27. Pandey, R.K., Maranville, J.W. and Chetima, M.M. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction. Agricultural Water Management 46(1): 15-27. https://doi.org/10.1016/S0378-3774(00)00074-3
  28. Priess, J.A., Schweitzer, C., Wimmer, F., Batkhishig, O., Mimler, M. 2011. The consequences of land-use change and water demands in Central Mongolia. Land Use Policy 28(1): 4-10. https://doi.org/10.1016/j.landusepol.2010.03.002
  29. Salvagiotti, F., Castellarin, J.M., Miralles, D.J. and Pedrol, H.M. 2009. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research 113(2): 170-177. https://doi.org/10.1016/j.fcr.2009.05.003
  30. Tsogtbaatar, J. 2004. Deforestation and reforestation needs in Mongolia. Forest Ecology and Management 201(1): 57-63. https://doi.org/10.1016/j.foreco.2004.06.011
  31. United Nations. 1994. UN Earth Summit. Convention on Desertification. UN Conference in Environment and Development, Rio de Janeiro, Brazil, June 3-4, 1992. DPI/SD/1576. United Nations, New York.
  32. Veron, S.R., Paruelo, J.M. and Oesterheld, M. 2006. Assessing desertification. Journal of Arid Environments 66(4): 751-763. https://doi.org/10.1016/j.jaridenv.2006.01.021
  33. Wesche, K. and Ronnenberg, K. 2010. Effects of NPK fertilisation in arid southern mongolian desert steppes. Plant Ecology 207(1): 93-105. https://doi.org/10.1007/s11258-009-9656-6
  34. Woodward, R.G. and Rawson, H.M. 1976. Photosynthesis and transpiration in dicotyledonous plants. II. Expanding and senescing leaves of soybean. Functional Plant Biology 3(2): 257-267.
  35. Wu, F., Bao, W., Li, F. and Wu, N. 2008. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany 63(1): 248-255. https://doi.org/10.1016/j.envexpbot.2007.11.002
  36. Yahdjian, L., Gherardi, L. and Sala, O.E. 2011. Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. Journal of Arid Environments 75(8): 675-680. https://doi.org/10.1016/j.jaridenv.2011.03.003