• Title/Summary/Keyword: Amorphous steel fiber

Search Result 34, Processing Time 0.021 seconds

Strength Property Evaluation of Amorphous Steel Fiber-Reinforced Concrete and Applicability Review of Test House (비정질 강섬유 보강 콘크리트 강도 특성 평가 및 실증하우스 적용성 검토)

  • Sung, Jong-Hyun;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.38-39
    • /
    • 2015
  • This study reviewed slump and air content as pre-hardening characteristics depending on B/P production of amorphous steel fiber-reinforced concrete and evaluated compressive strength, flexural strength and tensile strength as post-hardening characteristics depending on B/P production of amorphous steel fiber-reinforced concrete.

  • PDF

Comparative Bond Characteristics of Amorphous Steel Fiber and Conventional Steel Fiber in Cement Mortar (시멘트 모르타르 내 비정질 강섬유와 일반 강섬유의 부착특성 비교)

  • Cui, Chengkui;Kim, Youngjun;Kim, Baek-Joong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.238-239
    • /
    • 2014
  • It is well known that the bond characteristics of fiber govern the performance of fiber reinforced composite material. A preliminary study was carried out to investigate the pull-out behavior of amorphous and conventional single fiber in cement mortar in accordance with the JCI(Japan Concrete Institute) SF-8. The test was performed under displacement control, and results showed that the bond strength decreased with increasing fiber length. In addition, the amorphous steel fiber showed much higher pull-out load per unit weight compared to conventional steel fiber.

  • PDF

Evaluation of Electromagnetic Pulse Shielding Performance of Amorphous Metallic Fiber Reinforced Cement Composite (비정질 강섬유 보강 시멘트 복합체의 전자파 차폐성능 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Baek, Jae-Wook;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.50-51
    • /
    • 2018
  • In this study, it evaluate the electromagnetic pulse shielding performance of amorphous metallic fiber reinforced cement composite with other steel fiber reinforced cement composite. Hooked-ended steel fiber, smooth steel fiber and amorphous metallic fiber were reinforced 2.0 vol.% in cement composites respectively. The electromagnetic pulse shielding performance was evaluated by MIL-STD-188-125-1. As a result, shielding performance of amorphous metallic fiber reinforced cement composite was higher than Hooked-ended and smooth steel fiber reinforced cement composites. In addition, the relationship between the electrical conductivity and the electromagnetic pulse shielding performance of the cement composite was confirmed.

  • PDF

Comparison Analysis of Fiber Distribution and Workability for Amorphous Steel Fiber Reinforced Concrete (비정질강섬유 보강콘크리트 작업성 및 섬유 분산성 비교분석)

  • Kim, Byoung-Il;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.47-57
    • /
    • 2014
  • The research was conducted to analyze workability and fiber distributions of amorphous steel fiber reinforced concrete by changing fiber length and fiber addition ratio. The inverted slump cone and vebe tests as well as slump test was performed to understand the fluidity of amorphous steel fibers which have quite different appearance compared to conventional steel fibers. Test results showed that thin plate type of amorphous steel fibers required different test approach to figure out workability since the reduction of workability from slump test was different that from inverted slump cone and vebe tests. In conclusion, fluidity of amorphous steel fibers to concrete was significantly degraded as fiber length and addition ratio increase. Also, fibers space in cement matrix was apparently reduced as the increase of fiber length and addition ratios without fiber balling.

Investigation on the Applicability of Structures by Evaluating the Static Properties and the Impact Resistance Performance of Amorphous Metallic Fiber Reinforced Cement Composites (비정질 강섬유보강 시멘트복합체의 정역학특성 및 내충격성능 평가를 통한 구조물 적용 가능성 검토)

  • Kang, Il-Soo;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.79-80
    • /
    • 2017
  • This study examined the effect that the amorphous metallic fibers had on the static mechanical properties and the impact resistance of cement composites to those of hooked steel fibers. The hooked steel fiber exhibited pull-out from the matrix after the peak flexural stress was attained, while the amorphous metallic fiber was not pulled out from the matrix, but was instead cut off. In terms of impact resistance, the amorphous metallic fiber reinforced cement composite was found to be more effective at resisting cracking than the hooked steel fiber reinforced cement composite. Therefore, amorphous metallic fiber should be used in fiber reinforced cement composite materials, and for structural materials, and for protection panels.

  • PDF

The water vapor pressure property of 150MPa level ultra high strength concrete reinforced with polypropylene fiber and amorphous steel fiber at high temperature (고온에서 폴리프로필렌섬유와 비정질강섬유를 보강한 150MPa급 초고강도 콘크리트의 수증기 압력특성)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.132-133
    • /
    • 2020
  • The aim of this study is to evaluate the combination effect of amorphous steel fiber and polypropylene fiber on spalling of the 150MPa level ultra high strength concrete. Considering spalling has a great relationship with water vapor pressure, this paper is focusing on water vapor pressure. The test specimens were heated accordance with ISO-834 Standard Curve using electric heating furnace, the depth of 10mm water vapor pressure formation was tend to get faster and spalling damage become severe when the mixing proportion of amorphous steel fiber increase. When using ultra high strength concrete reinforced with amorphous steel fiber, further research about proper mixing proportion of polypropylene fiber.

  • PDF

Effect of Amorphous Steel Fiber on the Spalling Characteristics of High-strength Concrete (고강도콘크리트의 폭렬특성에 미치는 비정질 강섬유의 영향)

  • Kim, Jong-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.32-33
    • /
    • 2019
  • This study evaluated the effect of amorphous steel fibers on the spalling characteristics of high-strength concrete. with mix proportions of polypropylene (PP) fibers of 0.15% by concrete volume, and proportions of amorphous steel fibers of 0.3% and 0.5% by concrete volume. In the range of 0.3 vol% of amorphous steel fiber, the effect of suppression of the spalling and the prevention of degradation of strength was shown, but it was evaluated to be ineffective in the suppression of the spalling due to interferences in formation of pore network in the range of 0.5 vol.%.

  • PDF

Flexural Performance Characteristics of Amorphous Steel Fiber-Reinforced Concrete (비정질 강섬유보강콘크리트의 휨성능 특성)

  • Ku, Dong-Oh;Kim, Seon-Du;Kim, Hee-Seung;Choi, Kyoung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, the flexural test of amorphous steel fiber-reinforced concrete was performed according to ASTM C 1609 to investigate its flexural performances. The amorphous steel fibers have different configurations from conventional steel fibers : thinner sections and coarser surfaces. Primary test parameters are fiber type (amorphous and conventional steel fibers), concrete compressive strength (27 and 50 MPa), and fiber volume fraction (0.25, 0.50, and 0.75%). Based on the test results, flexural strength and flexural toughness of the amorphous and conventional steel fiber-reinforced concrete were investigated. The results showed that the addition of the amorphous steel fibers into concrete could enhance both flexural strength and toughness while the addition of the conventional steel fibers into concrete was mainly effective to increase the flexural toughness.

Workability and Strength Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Organic Fiber (비정질 강섬유와 유기섬유를 이용한 하이브리드 섬유보강 콘크리트의 작업성 및 강도 특성)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Jin-Oo;Lee, Jun-Cheol
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.58-63
    • /
    • 2015
  • The purpose of this experimental research is to evaluate the workability and strength properties of hybrid fiber reinforced concrete containing amorphous steel fiber and organic fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) with polyamide(PA) and polyvinyl alcohol(PVA) fiber, respectively were made according to their total volume fraction of 0.5% for water-binder ratio of 33%, and then the characteristics such as the workability, compressive strength, and flexural strength of those were investigated. It was observed from the test results that the workability and compressive strength at 7 and 28 days were decreased and the flexural strength at 7 and 28 days was increased with increasing ASF and decreasing organic fiber.

Thermal performance prediction of amorphous steel fibers mixed into the floor heating system (비정질 강섬유 혼입 바닥난방시스템의 열성능 평가)

  • Cho, Hyun;Pang, Seung-Ki
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • The thermal performance of amorphous steel fibers mixed floor heating system was evaluated. Analysis of results, depending on the hot water supply temperature changes, the average temperature of the bottom of the hot water supply temperature is an amorphous steel fiber floor heating system is about 2~4% higher. The average temperature of the floor surface to 1.5m air amorphous steel fiber system is 1~2% higher. The amount of heat supplied to indoor air (1.5m) from the bottom surface of amorphous steel fiber floor heating system is about 7~8% higher