• Title/Summary/Keyword: Amorphous TFTs

Search Result 197, Processing Time 0.029 seconds

산소분압에 따른 IGZO 박막트랜지스터의 특성변화 연구

  • Han, Dong-Seok;Gang, Yu-Jin;Park, Jae-Hyeong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.497-497
    • /
    • 2013
  • Semiconducting amorphous InGaZnO (a-IGZO) has attracted significant research attention as improved deposition techniques have made it possible to make high-quality a-IGZO thin films. IGZO thin films have several advantages over thin film transistors (TFTs) based on other semiconducting channel layers.The electron mobility in IGZO devices is relatively high, exceeding amorphous Si (a-Si) by a factor of 10 and most organic devices by a factor of $10^2$. Moreover, in contrast to other amorphous semiconductors, highly conducting degenerate states can be obtained with IGZO through doping, yet such a state cannot be produced with a-Si. IGZO thin films are capable of mobilities greaterthan 10 $cm^2$/Vs (higher than a-Si:H), and are transparent at visible wavelengths. For oxide semiconductors, carrier concentrations can be controlled through oxygen vacancy concentration. Hence, adjusting the oxygen partial pressure during deposition and post-deposition processing provides an effective method of controlling oxygen concentration. In this study, we deposited IGZO thinfilms at optimized conditions and then analyzed the film's electrical properties, surface morphology, and crystal structure. Then, we explored how to generate IGZO thin films using DC magnetron sputtering. We also describe the construction and characteristics of a bottom-gate-type TFT, including the output and transfer curves and bias stress instability mechanism.

  • PDF

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

Microcrystalline Si TFTs with Low Off-Current and High Reliability

  • Kim, Hyun-Jae;Diep, Bui Van;Bonnassieux, Yvan;Djeridane, Yassine;Abramov, Alexey;Pere, Roca i Cabarrocas
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1025-1028
    • /
    • 2005
  • Microcrystalline Si (${\mu}c-Si$) TFTs were fabricated using a conventional bottom gate amorphous Si (a-Si) process. A unique ${\mu}c-Si$ deposition technique and TFT architecture was proposed to enhance the reliability of the TFTs. This three-mask TFT fabrication process is comparable with existing a-Si TFT procesess. In order to suppress nucleation at the bottom interface of Si, before deposition of the ${\mu}c-Si$ an $N_2$ plasma passivation was conducted. A typical transfer characteristic of the TFTs shows a low off-current with a value of less than 1 pA and a sub threshold slop of 0.7 V/dec. The DC stress was applied to verify the use of ${\mu}c-Si$ TFTs for AMOLED displays. After 10,000 s of application of the stress, the off-current was even lowered and sub-threshold slope variation was less than 5%. For AMOLED displays, OLED pixel simulation was performed. A pixel current of 13 ${\mu}A$ was achieved with $V_{data}$ of 10 V. After the simulation, a linear equation for the pixel current was suggested.

  • PDF

Electrical Properties of a-IGZO Thin Films for Transparent TFTs

  • Bang, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.99-99
    • /
    • 2010
  • Recently, amorphous transparent oxide semiconductors (TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). The TOS TFTs using a-IGZO channel layers exhibit a high electron mobility, a smooth surface, a uniform deposition at a large area, a high optical transparency, a low-temperature fabrication. In spite of many advantages of the sputtering process such as better step coverage, good uniformity over large area, small shadow effect and good adhesion, there are not enough researches about characteristics of a-IGZO thin films. In this study, therefore, we focused on the electrical properties of a-IGZO thin films as a channel layer of TFTs. TFTs with the a-IGZO channel layers and Y2O3 gate insulators were fabricated. Source and drain layers were deposited using ITO target. TFTs were deposited on unheated non-alkali glass substrates ($5cm{\times}5cm$) with a sintered ceramic IGZO disc (3 inch $\varnothing$, 5mm t), Y2O3 disc (3 inch $\varnothing$, 5mm t) and ITO disc (3 inch $\varnothing$, 5mm t) as a target by magnetron sputtering method. The O2 gas was used as the reactive gas. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of a-IGZO thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Pixel Circuit with Threshold Voltage Compensation using a-IGZO TFT for AMOLED

  • Lee, Jae Pyo;Hwang, Jun Young;Bae, Byung Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.594-600
    • /
    • 2014
  • A threshold voltage compensation pixel circuit was developed for active-matrix organic light emitting diodes (AMOLEDs) using amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO-TFTs). Oxide TFTs are n-channel TFTs; therefore, we developed a circuit for the n-channel TFT characteristics. The proposed pixel circuit was verified and proved by circuit analysis and circuit simulations. The proposed circuit was able to compensate for the threshold voltage variations of the drive TFT in AMOLEDs. The error rate of the OLED current for a threshold voltage change of 3 V was as low as 1.5%.

Stress Estimation of a Drain Current in Sub-threshold regime of amorphous Si:H

  • Lee, Do-Young;Lee, Kyung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1172-1175
    • /
    • 2007
  • We have investigated the threshold voltage shifts(${\Delta}Vth$) and drain current level shift (${\Delta}Ids$) in subthreshold region of a-Si:H TFTs induced by DC Bias (Vgs and Vds) - Temperature stress (BTS) condition. We plotted the transfer curves and the ${\Delta}Vth$ contour maps as Vds-Vds stress bias and Temperature to examine the severe damage cases on TFTs. Also, by drawing out the time-dependent transfer curve (Ids-Vgs) in the region of $10^{-8}\;{\sim}\;10^{-13}$ (A) current level, we can estimate the failure time of TFTs in a operating condition.

  • PDF

Importance of Gate $SiN_x$ Properties Related to a-Si:H TFT Instability

  • Tsai, Chien-Chien;Lee, Yeong-Shyang;Shih, Ching-Chieh;Hsu, Chung-Yi;Liang, Chung-Yu;Lin, Y.M.;Gan, Feng-Yuan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.711-714
    • /
    • 2006
  • Properties of silicon nitride ($SiN_x$) film including physical and electrical characteristics have been studied for improving the stability of hydrogenated amorphous silicon thin-film transistors (a-Si TFTs) in active-matrix liquid-crystal displays (AMLCDs). The instability of a-Si:H TFTs is estimated by accelerated stress test of both bias-temperature stress and bias-illumination stress. The results show that the deposition conditions of $SiN_x$ films with higher power and lower pressure are the best choice for improving the on-current and stability of TFTs.

  • PDF

Fabrication of $\mu$c-Si:H TFTs by PECVD (PECVD에 의한 $\mu$c-Si:H 박막트랜지스터의 제조)

  • 문교호;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.117-124
    • /
    • 1996
  • The .mu.c-Si:H films have been deposited by PeCVD at the various conditions such as hydrogen dilution ratio, substrate temperature and RF power density. Then, we studied their electrical and optical properties. Top gate hydrogenated micro-crystalline silicon thin film transistors($\mu$c-Si:H TFTs) using $\mu$-Si:H and a-SiN:H films have been fabricated by FECVD. The electrical characteristics of the devices have been investigated by semiconductor parameter analyzer and compared with amorphous silicon thin film transistors (a-Si:H TFTs). In this study, on/off current ratio, threshold voltage and the field effect mobility of the $\mu$c-Si:H TFT were $3{\times}10^{4}$, 5.06V and 0.94cm$^{2}$Vs, respectively.

  • PDF

Enhanced Electrical Performance of SiZnSnO Thin Film Transistor with Thin Metal Layer

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.141-143
    • /
    • 2017
  • Novel structured thin film transistors (TFTs) of amorphous silicon zinc tin oxide (a-SZTO) were designed and fabricated with a thin metal layer between the source and drain electrodes. A SZTO channel was annealed at $500^{\circ}C$. A Ti/Au electrode was used on the SZTO channel. Metals are deposited between the source and drain in this novel structured TFTs. The mobility of the was improved from $14.77cm^2/Vs$ to $35.59cm^2/Vs$ simply by adopting the novel structure without changing any other processing parameters, such as annealing condition, sputtering power or processing pressure. In addition, stability was improved under the positive bias thermal stress and negative bias thermal stress applied to the novel structured TFTs. Finally, this novel structured TFT was observed to be less affected by back-channel effect.