• Title/Summary/Keyword: Amorphous Silicon

Search Result 793, Processing Time 0.029 seconds

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF

Cost-effective surface passication layers by RTP and PECVD (RTP 와 PECVD을 이용한 저가의 표면 passivation 막들의 특성연구)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.142-145
    • /
    • 2004
  • In this work, we have investigated the application of rapid thermal processing (RTP) and plasma enhanced chemical vapour deposition (PECVD) for surface passivation. Rapid thermal oxidation (RTO) has sufficiently low surface recombination velocities (SRV) $S_{eff}$ in spite of a thin oxides and short process time. The effective lifetime is increasing with an increase of the oxide thickness. In the same oxide thickness, The effective lifetime is independent on the process temperature and time. $S_{eff,max}$ is exponentially decreased with increasing oxide thickness. $S_{eff,max}$ can be reduced to 200 cm/s with only 10 nm oxide thickness. On the other hand, three different types of SiN are reviewed. SiN1 layer has a thickness of about 72 nm and a refractive index of 2.8. Also, The SiN1 has a high passivation quality. The effective lifetime and SRV of 1 $\Omega$ cm Float zone (FZ) silicon deposited with SiN1 is about 800 s and under 10 cm/s, respectively. The SiN2 is optimized for the use as an antireflection layer since a refractive index of 2.3. The SiN3 is almost amorphous silicon caused by less contents of N2 from total process. The effective lifetime on the FZ 1 ${\Omega}cm$ is over 1000 ${\mu}s$.

  • PDF

Study on the effect of DSSC(Dye Sensitizer Solar Cell) Material on the electrical properties of Mercuric Iodide (염료감응형태양열 물질이 요오드화수은의 전기적 특성에 미치는 영향에 관한 연구)

  • Cho, Gyu-Seok;Park, Ji-koon;Heo, Seung-Wook;Song, Yong-keun;Han, Moo-Jae;Kim, Kum-Bae;Choi, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.525-529
    • /
    • 2017
  • As a photoconductive material with a high X-ray sensitivity, many researches about mercury iodide has been carried out to substitute for amorphous selenium. However, it has many limitations in commercialization because of the high leakage current. In this study, we fabricated $HgI_2$ unit-cells with mixed silicon oxide($SiO_2$) and titanium oxide($TiO_2$) to reduce a high leakage current and we evaluated an electrical properties of the fabricated unit-cells. As a result, we confirmed that both mixtures were effective in reduing the leakage current of the $HgI_2$ and x-ray sensitivity were significantly increased in fabricated $HgI_2-TiO_2$ unit-cell.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Effect of Ion Mass Doping on Metal-Induced Lateral Crystallization (이온 질량 주입이 금속 유도 측면 결정화에 미치는 영향)

  • Kim, Tae-Gyeong;Kim, Gi-Beom;Yun, Yeo-Geon;Kim, Chang-Hun;Lee, Byeong-Il;Ju, Seung-Gi
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.25-30
    • /
    • 2000
  • Ion mass doping method has been implemented for the fabrication of large area electronic devices such as TFT-LCD. In this work, the effect of ion mass doping on the velocity and the behavior of MILC was investigated. When amorphous silicon was either doped or bombarded by accelerated ions, MILC velocity was reduced by over 50% and the front edge of MILC became coarse. In order to analyze the dependence of silicon film's properties on ion mass doping, ultraviolet reflectance and sulfate roughness were investigated. Both the velocity and the behavior of MILC were found to be related with the increase of surface roughness by ion bombardment.

  • PDF

High-temperature oxidation resistance of Ti-Si-N coating layers prepared by DC magnetron sputtering method (DC magnetron sputtering법으로 제조된 Ti-Si-N코팅막의 내산화성에 관한 연구)

  • Choi, Jun-Bo;Ryu, Jung-Min;Cho, Gun;Kim, Kwang-Ho;Lee, Mi-Hye
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.415-421
    • /
    • 2002
  • Ti-Si-N coating layers were codeposited on silicon wafer substrates by a DC reactive magnetron sputtering technique using separate titanium and silicon targets in $N_2$/Ar gas mixtures. The oxidation behavior of Ti-Si-N coating layers containing 4.0 at.%, 10.0 at.%, and 27.3 at.% Si was investigated at temperatures ranging from 600 to $960^{\circ}C$. The coating layers containing 4.0 at.% Si became fast oxidized from $600^{\circ}C$ while the coating layers containing 10.0 at.% Si had oxidation resistance up to $800^{\circ}C$. It was concluded that an increase in Si content to a level of 10.0 at.% led to the formation of finer TiN grains and a uniformly distributed amorphous Si3N4 phase along grain boundaries, which acted as efficient diffusion barriers against oxidation. However, the coating layers containing 27.3 at.% Si showed relatively low oxidation resistance compared with those containing 10.0 at.% Si. This phenomenon would be explained by the existence of free Si which was not nitrified in the coating layers containing 27.3 at.% Si.

The Study of poly-Si Eilm Crystallized on a Mo substrate for a thin film device Application (박막소자응용을 위한 Mo 기판 위에 고온결정화된 poly-Si 박막연구)

  • 김도영;서창기;심명석;김치형;이준신
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 2003
  • Polycrystalline silicon thin films have been used for low cost thin film device application. However, it was very difficult to fabricate high performance poly-Si at a temperature lower than $600^{\circ}C$ for glass substrate because the crystallization process technologies like conventional solid phase crystallization (SPC) require the number of high temperature (600-$1000^{\circ}C$) process. The objective of this paper is to grow poly-Si on flexible substrate using a rapid thermal crystallization (RTC) of amorphous silicon (a-Si) layer and make the high temperature process possible on molybdenum substrate. For the high temperature poly-Si growth, we deposited the a-Si film on the molybdenum sheet having a thickness of 150 $\mu\textrm{m}$ as flexible and low cost substrate. For crystallization, the heat treatment was performed in a RTA system. The experimental results show the grain size larger than 0.5 $\mu\textrm{m}$ and conductivity of $10^{-5}$ S/cm. The a-Si was crystallized at $1050^{\circ}C$ within 3min and improved crystal volume fraction of 92 % by RTA. We have successfully achieved a field effect mobility over 67 $\textrm{cm}^2$/Vs.

Characterization of Surface Morphology and Light Scattering of Transparent Conducting ZnO:Al Films as Front Electrode for Silicon Thin Film Solar Cells (실리콘 박막 태양전지 전면 전극용 ZnO : Al 투명전도막의 표면형상 및 산란광 특성)

  • Kim, Young-Jin;Cho, Jun-Sik;Lee, Jeong-Chul;Wang, Jin-Suk;Song, Jin-Soo;Yoon, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.245-252
    • /
    • 2009
  • Changes in the surface morphology and light scattering of textured Al doped ZnO thin films on glass substrates prepared by rf magnetron sputtering were investigated. As-deposited ZnO:Al films show a high transmittance of above 80% in the visible range and a low electrical resistivity of $4.5{\times}10^{-4}{\Omega}{\cdot}cm$. The surface morphology of textured ZnO:Al films are closely dependent on the deposition parameters of heater temperature, working pressure, and etching time in the etching process. The optimized surface morphology with a crater shape is obtained at a heater temperature of $350^{\circ}C$, working pressure of 0.5 mtorr, and etching time of 45 seconds. The optical properties of light transmittance, haze, and angular distribution function (ADF) are significantly affected by the resulting surface morphologies of textured films. The film surfaces, having uniformly size-distributed craters, represent good light scattering properties of high haze and ADF values. Compared with commercial Asahi U ($SnO_2$:F) substrates, the suitability of textured ZnO:Al films as front electrode material for amorphous silicon thin film solar cells is also estimated with respect to electrical and optical properties.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF

Bulk and Surface Reactions of Atomic H with Crystalline Si(100)

  • 조삼근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.175-175
    • /
    • 2000
  • Si(100) surfaces were exposed to gas-phase thermal-energy hydrogen atoms, H(g). We find that thermal H(g) atoms etch, amorphize, or penetrate into the crystalline silicon substrate, depending on the employed Ts range during the H(g) exposure. We find that etching is enhanced as Ts is lowered in the 300-700K range, while amorphous silicon hydride (a-Si:H) formation dominates at a Ts below 300K. This result was well explained by the fact that formation of the etching precursor, SiHx(a), and amorphization are both facilitated by a lower Ts, whereas the final step for etching, SiH3(a) + H(g) longrightarrow SiH3(g), is suppressed at a lower Ts. we also find that direct absorption of H(g) by the crystalline bulk of Si(100) substrate occurs within a narrow Ts window of 420-530K. The bulk-absorbed hydrogen evolved out molecularly from Si(100) at a Ts 80-120K higher than that for surface monohydride phase ($\beta$1) in temperature-programmed desorption. This bulk-phase H uptake increased with increasing H(g) exposure without saturation within our experimental limits. Direct absorption of H(g) into the bulk lattice occurs only when the surface is atomically roughened by surface etching. While pre-adsorbed hydrogen atoms on the surface, H(a), were readily abstracted and replaced by D(g), the H atoms previously absorbed in the crystalline bulk were also nearly all depleted, albeit at a much lower rate, by a subsequent D(g) at the peak temperature in TPD from the substrate sequentially treated with H(g) and D(g), together with a gas phase-like H2 Raman frequency of 4160cm-1, will be presented.

  • PDF