• Title/Summary/Keyword: Amorphous Silicon

Search Result 793, Processing Time 0.026 seconds

Effect of Surface Microstructure of Silicon Substrate on the Reflectance and Short-Circuit Current (실리콘 기판 표면 형상에 따른 반사특성 및 광 전류 개선 효과)

  • Yeon, Chang Bong;Lee, Yoo Jeong;Lim, Jung Wook;Yun, Sun Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.116-122
    • /
    • 2013
  • For fabricating silicon solar cells with high conversion efficiency, texturing is one of the most effective techniques to increase short circuit current by enhancing light trapping. In this study, four different types of textures, large V-groove, large U-groove, small V-groove, and small U-groove, were prepared by a wet etching process. Silicon substrates with V-grooves were fabricated by an anisotropic etching process using a KOH solution mixed with isopropyl alcohol (IPA), and the size of the V-grooves was controlled by varying the concentration of IPA. The isotropic etching process following anisotropic etching resulted in U-grooves and the isotropic etching time was determined to obtain U-grooves with an opening angle of approximately $60^{\circ}$. The results indicated that U-grooves had a larger diffuse reflectance than V-grooves and the reflectances of small grooves was slightly higher than those of large grooves depending on the size of the grooves. Then amorphous Si:H thin film solar cells were fabricated on textured substrates to investigate the light trapping effect of textures with different shapes and sizes. Among the textures fabricated in this work, the solar cells on the substrate with small U-grooves had the largest short circuit current, 19.20 mA/$cm^2$. External quantum efficiency data also demonstrated that the small, U-shape textures are more effective for light trapping than large, V-shape textures.

The Fabrication and Electrical Characteristics of Pentacene TFT using Polyimide and Polyacryl as a Gate Dielectric Layer (Polymide와 Polyacryl을 게이트 절연층으로 이용한 pentacene TFT의 제작과 전기적 특성에 관한 연구)

  • Kim, Yun-Myoung;Kim, Ok-Byoung;Kim, Young-Kwan;Kim, Jung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.161-168
    • /
    • 2001
  • Organic thin film transitors(TFTs) are of interest for use in broad area electronic applications. For example, in active matrix liquid crystal displays(AMLCDs), organic TFTs would allow the use of inexpensive, light-weight, flexible, and mechanically rugged plastic substrates as an alternative to the glass substrates needed for commonly used hydrogenated amorphous silicon(a-Si:H). Recently pentacene TFTs with carrier field effect, mobility as large as 2 $cm^2V^{-1}s^{-1}$ have been reported for TFTs fabricated on silicon substrates, and it is higher than that of a-Si:H. But these TFTs are fabricated on silicon wafer and $SiO_2$ was used as a gate insulator. $SiO_2$ deposition process requires a high insulator which is polyimide and photo acryl. We investigated trasfer and output characteristics of the thin film transistors having active layer of pentacene. We calculated field effect mobility and on/off ratio from transfer characteristics of pentacene thin film transistor, and measured IR absorption spectrum of polymide used as the gate dielectric layer. It was found that using the photo acryl as a gate insulator, threshold voltage decreased from -12.5 V to -7 V, field effect mobility increased from 0.012 $cm^2V^{-1}s^{-1}$ to 0.039 $cm^2V^{-1}s^{-1}$ , and on/off current ratio increased from $10^5\;to\;10^6$. It seems that TFTs using photo acryl gate insulator is apt to form channel than TFTs using polyimide gate insulator.

  • PDF

Effects of Deposition Parameters on the Bonding Structure and Optical Properties of rf Sputtered a-Si$_{1-x}$C$_{x}$: H films (RF 스퍼터링으로 증착된 a-Si$_{1-x}$C$_{x}$: H 박막의 결합구조와 광학적 성질에 미치는 증착변수의 영향)

  • 한승전;권혁상;이혁모
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.271-281
    • /
    • 1992
  • Amorphous hydrogenated silicon carbide(a-Si1-xCx : H) films have been prepared by the rf sputtering using a silicon target in a gas mixture of Argon and methane with varying methane gas flow rate(fCH) in the range of 1.5 to 3.5 sccm at constant Argon flow rate of 30sccm and rf power in the range of 3 to 6 W/$\textrm{cm}^2$. The effects of methane flow rate and rf power on the structure and optical properties of a-Si1-xCx : H films have been analysed by measuring both the IR absorption spectrum and the UV transmittance for the films. With increasing the methane flow rate, the optical band gap(Eg) of a-Si1-xCx : H films increases gradually from 1.6eV to the maximum value of 2.42eV at rf power of 4 W/$\textrm{cm}^2$, which is due to an increases in C/Si ratio in the films by an significant increase in the number of C-Hn bonds. As the rf power increases, the number of Si-C and Si-Hn bonds increases rapidly with simultaneous reduction in the number of C-Hn bonds, which is associated with an increase in both degree of methane decomposition and sputtering of silicon. The effects of rf power on the Eg of films are considerably influenced by the methane flow rate. At low methane flow rate, the Eg of films decreased from 2.3eV to 1.8eV with the rf power. On the other hand, at high methane flow rate, that of films increased slowly to 2.4eV.

  • PDF

A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation (방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석)

  • Kim, Giyoon;Kim, Myungsoo;Lim, Kyungtaek;Lee, Eunjung;Kim, Chankyu;Park, Jonghwan;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Study on the fabrication of a polycrystalline silicon (pc-Si) seed layer for the pc-Si lamelliform solar cell (다결정 실리콘 박형 태양전지를 위한 다결정 실리콘 씨앗층 제조 연구)

  • Jeong, Hyejeong;Oh, Kwang H.;Lee, Jong Ho;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We studied the fabrication of polycrystalline silicon (pc-Si) films as seed layers for application of pc-Si thin film solar cells, in which amorphous silicon (a-Si) films in a structure of glass/Al/$Al_2O_3$/a-Si are crystallized by the aluminum-induced layer exchange (ALILE) process. The properties of pc-Si films formed by the ALILE process are strongly determined by the oxide layer as well as the various process parameters like annealing temperature, time, etc. In this study, the effects of the oxide film thickness on the crystallization of a-Si in the ALILE process, where the thickness of $Al_2O_3$ layer was varied from 4 to 50 nm. For preparation of the experimental film structure, aluminum (~300 nm thickness) and a-Si (~300 nm thickness) layers were deposited using DC sputtering and PECVD method, respectively, and $Al_2O_3$ layer with the various thicknesses by RF sputtering. The crystallization of a-Si was then carried out by the thermal annealing process using a furnace with the in-situ microscope. The characteristics of the produced pc-Si films were analyzed by optical microscope (OM), scanning electron microscope (SEM), Raman spectrometer, and X-ray diffractometer (XRD). As results, the crystallinity was exponentially decayed with the increase of $Al_2O_3$ thickness and the grain size showed the similar tendency. The maximum pc-Si grain size fabricated by ALILE process was about $45{\mu}m$ at the $Al_2O_3$ layer thickness of 4 nm. The preferential crystal orientation was <111> and more dominant with the thinner $Al_2O_3$ layer. In summary, we obtained a pc-Si film not only with ${\sim}45{\mu}m$ grain size but also with the crystallinity of about 75% at 4 nm $Al_2O_3$ layer thickness by ALILE process with the structure of a glass/Al/$Al_2O_3$/a-Si.

  • PDF

Low-temperature synthesis of nc-Si/a-SiNx: H quantum dot thin films using RF/UHF high density PECVD plasmas

  • Yin, Yongyi;Sahu, B.B.;Lee, J.S.;Kim, H.R.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.341-341
    • /
    • 2016
  • The discovery of light emission in nanostructured silicon has opened up new avenues of research in nano-silicon based devices. One such pathway is the application of silicon quantum dots in advanced photovoltaic and light emitting devices. Recently, there is increasing interest on the silicon quantum dots (c-Si QDs) films embedded in amorphous hydrogenated silicon-nitride dielectric matrix (a-SiNx: H), which are familiar as c-Si/a-SiNx:H QDs thin films. However, due to the limitation of the requirement of a very high deposition temperature along with post annealing and a low growth rate, extensive research are being undertaken to elevate these issues, for the point of view of applications, using plasma assisted deposition methods by using different plasma concepts. This work addresses about rapid growth and single step development of c-Si/a-SiNx:H QDs thin films deposited by RF (13.56 MHz) and ultra-high frequency (UHF ~ 320 MHz) low-pressure plasma processing of a mixture of silane (SiH4) and ammonia (NH3) gases diluted in hydrogen (H2) at a low growth temperature ($230^{\circ}C$). In the films the c-Si QDs of varying size, with an overall crystallinity of 60-80 %, are embedded in an a-SiNx: H matrix. The important result includes the formation of the tunable QD size of ~ 5-20 nm, having a thermodynamically favorable <220> crystallographic orientation, along with distinct signatures of the growth of ${\alpha}$-Si3N4 and ${\beta}$-Si3N4 components. Also, the roles of different plasma characteristics on the film properties are investigated using various plasma diagnostics and film analysis tools.

  • PDF

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

a-Si:H Image Sensor for PC Scanner

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.116-120
    • /
    • 2007
  • In this paper, the image sensor using the a-Si:H TFT is proposed. The optimum amorphous silicon thin film is deposited using plasma enhanced chemical vapor deposition (PECVD). TFT and photodiode both with the thin film are fabricated and form image sensor. The photodiode shows that $I_{dark}\;is\;{\sim}10^{-13}\;A,\;I_{photo}\;is\;{\sim}10^{-9}\;A\;and\;I_{photo}/I_{dark}\;is\;{\sim}10^4$, respectively. In the case of a-Si:H TFT, it indicates that $I_{on}/I_{off}\;is\;10^6$, the drain current is a few ${\mu}A\;and\;V_{th}\;is\;2{\sim}4$ volts. For the analysis on the fabricated image sensor, the reverse bias of -5 volts in ITO of photodiode and $70 {\mu}sec$ pulse in the gate of TFT are applied. The image sensor with good property was conformed through the measured photo/dark current.

A New AMOLED Pixel Circuit Employing a-Si:H TFTs for High Aperture Ratio

  • Shin, Hee-Sun;Lee, Jae-Hoon;Jung, Sang-Hoon;Kim, Chang-Yeon;Han, Min-Koo
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.12-15
    • /
    • 2005
  • We propose a new pixel design for active matrix organic light emitting diode (AM-OLED) displays using hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs). The pixel circuit is composed of five TFTs and one capacitor, and employs only one additional control signal line. It is verified by SPICE simulation results that the proposed pixel compensates the threshold voltage shift of the a-Si:H TFTs and OLED.