• Title/Summary/Keyword: Ammonium sulfide

Search Result 24, Processing Time 0.025 seconds

Electrical Characteristic of AI/AIN/GaAs MIS capacitor Fabricated by Reactive Sputtering Method for the (NH4)2S Treatment (반응성 스퍼터링법으로 AI/AIN/GaAs 커패시터 제조시 (NH4)2S 처리에 따른 전기적 특성)

  • Chu, Soon-Nam;Kwon, Jung-Youl;Park, Jung-Cheul;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • In MIS capacitor structure, we have studied the electrical properties in Ammonium Sulfide solution treatment while AIN thin film as a insulator is being formed by reactive sputtering method. The deposition process conditions of AIN thin film we temperature $250^{\circ}C$, DC Power 150 W, pressure 5 mTorr and 8 sccm(Ar : 4 sccm, $N_{2}$ : 4 sccm). The surface of GaAs was treated with Ammonium Sulfide solution, it was shown the leakage current was less than $10^{-8}\;A/cm^{2}$. The deep depletion phenomena of inverse area with treating Ammonium Sulfide solution in C-V analysis was improved as compared the condition of without Ammonium Sulfide solution and hysteresis property as well.

Electrochemical Properties of Lithium Batteries with Nickel Sulfide by Ammonium Polysulfide (다황화암모늄에 의해 제조된 황화니켈을 이용한 리튬전지의 전기 화학적 특성 평가)

  • RYU, HO SUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.612-617
    • /
    • 2021
  • In the case of a metal sulfide electrode, it is used as an anode or cathode active material in a lithium battery. The reason is that the voltage exists between 0.8 and 2.0 V via lithium electrode and the discharge and charge capacity is high. In order to manufacture nickel sulfide for electrode, which are widely used, nano-nickel powder was sulfided using ammonium polysulfide, and single-phase NiS electrodes were manufactured through heat treatment. The prepared NiS electrode had a high initial capacity of 500 mAh/g or more, and was stabilized after 20 cycles to maintain a capacity of 400 mAh/g or more until 100 cycles.

3상 생물막유동층반응기를 이용한 황화수소와 암모니아의 동시제거

  • Park, Jin-Su;Mun, Jong-Hye;Kim, Jong-U;Kim, Dong-Uk;O, Gwang-Jung
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.339-342
    • /
    • 2000
  • A three phase fluidized bed bioreactor including Thiobacillus sp.IW was used to remove hydrogen sulfide and ammonia simultaneously. In this study, hydrogen sulfide was oxidized to sulfate by the microorganism and ammonia was reacted with the sulfate to form ammonium sulfate. Removal efficiency of hydrogen sulfide was almost perfect up to 45 mg/l h of inlet loading rate, whereas that of ammonia was reduced as inlet loading rate increased from 10 mg/1 h.

  • PDF

Electrodeposition of Manganese from Ferromanganese Slag with Ammonium Sulfate (황산암모늄에 의한 훼로망간 슬랙으로부터 망간의 전착)

  • Duk Mook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.390-396
    • /
    • 1985
  • The manganese was extracted from ferromanganese slag with 6N ammonium sulfate and purified with ammonium sulfide. The current efficiencies were substantially increased when small amounts of selenious acid is used as an additive. Stainless steel was used as cathodic electrode and lead (+1% Ag) as anodic electrode. The effects of several variables were investigated, and the optimum conditions were found to be; 40g/l Mn in electrolyte at pH 7.0 with 1$20g/l (NH_4)_2SO_4$, Cathode current density 60mA/cm$^2$, Current efficiency 90% and up at the temperature about $25^{\circ}C.$ The metal produced has been consistantly of high quality.

  • PDF

Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine

  • Butzke, C.E.;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 2011
  • The correlation between alcoholic fermentation rate, measured as carbon dioxide ($CO_2$) evolution, and the rate of hydrogen sulfide ($H_2S$) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace $H_2S$ were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; $H_2S$ was quantitatively trapped in realtime using a pre-calibrated $H_2S$ detection tube which was inserted into a fermentor gas relief port. Evolution rates for $CO_2$ and $H_2S$ as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated $H_2S$ formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of $H_2S$ when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained $CO_2$ production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the $H_2S$ formation was marginal.

Effects of Cultivation Condition on Growth of the Hydrogen Sulfide-Degradating Thiobacillus sp. IW. Isolated from Waste Coal Mine Water (폐탄광수에서 분리한 황화수소 분해 세균 Thiobacillus sp. IW.의 성장조건)

  • 차진명;박열이인화
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.287-293
    • /
    • 1994
  • A bacterium isolated from waste coal mine water around Hawsun had an ability for the degradation of hydrogen sulfide. The isolate was identified as Thiobacillus sp. IW. on the basis of its morphological, physiological and chemotaxonomical characteristics. The optimum pH and temperature were 7 and $30^{\circ}C$, respectively. Growth occurred in a pH range of 3 to 9. Due to the sulfate accumulated in liquid medium, the pH decreased. As a consequence the cell growth was inhibited. Potasium nitrate and glutamic acid were utilized as a nitrogen source but urea and ammonium chloride not consumed. Denitrification occurred in a basal medium containing the glucose but did not in a basal medium containing the malate. The maximum specific growth rate of cell was 0.78h-1 and generation time was 0.9 hour. The cell productivity was 6.25mg/1$.$h and the isolate grew logarithmically up to 18 hour. These results indicate that the isolate can be a suitable bacterium responsible for degradation of hydrogen sulfide as malodorous compounds.

  • PDF

Formation and Behavior of Sedimentary Inorganic Sulfides in Banweol Intertidal Flat, Kyoung-gi Bay, West Coast of Korea (황해 경기만 반월조간대 퇴적물 내의 황화물 형성과 행동에 관한 연구)

  • 김범수;이창복
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.229-240
    • /
    • 1993
  • This study investigated the behaviour of sulfur species after the early diegenetic reduction of sulfate from pore solution in an anoxic intertidal flat deposit in the Banweol area of Kyeong-gi Bay, west coast of Korea. A total of seven sediment cores were collected during 1990∼1992 and were analyzed for their solid-phase sulfur species (acid-volatile sulfur, element sulfur, pyrite sulfur) as well as for chemical components in the pore solution, such as sulfate, ammonium, hydrogen sulfide, phosphate and Fe ion. The pore water sulfate oncentration was found to decrease rapidly downward from the sediment surface, while that of hydrogen sulfide, ammonium and phosphate showed and increase. The dissolved iron concentration in pore water, on the other hand, was found high in the surface layer of sediment, but fell sharply below this layer. these characteristic profiles of pore water sulfide and iron concentrations suggest that some reaction occurs between dissolved iron and sulfide ions, leading to the formation of various sulfide minerals in the sedimentary phase. The amount of inorganic sulfur species in the sediment increased downward, and showed a maximum of up to 7.9 mg/g. among the three species analyzed, acid-volatile sulfur (AVS) was dominant comprising more than 50% of the total. The amount of pyrite sulfur was greater than that of element sulfur. This implies that the formation of pyrite was restricted in this environment. the limited amount of element sulfur in this deposit may have discouraged the active formation of pyrite.

  • PDF

Evaluation of Improvement on Sediment for Practical Application in Prawn Farm (새우 양식장에 적용을 위한 저질개선 평가)

  • Kim Woo-Hang;Kim Doo Hee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.81-84
    • /
    • 2004
  • Control of Sediment is very important in prawn farm due to the eruption of toxic material such as W1ionized H2S, NH3 and NO2-. In this study, column test study, column with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment ammonia-N(NH3) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion(NH4+) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of NH4+, which is not toxic for prawn because oyster shell was stably kept around pH 8. Therefore, some of ammonia(NH3) was reduced by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

A study on the Synthesis of Nickel Hydroxide by Ammonium Sulfate from Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지로부터 황산암모늄을 이용한 수산화니켈 제조 방안 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jeong, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.51-59
    • /
    • 2019
  • This study focused on the synthesis of the nickel hydroxide using ammonium sulfate in leaching solution from waste nickel-cadmium batteries. The effect of pH, temperature and the input amount of ammonium sulfate in leaching solution was investigated. The ammonium nickel sulfate with high purity was obtained in acidic leaching solution and the solution temperature of $60^{\circ}C$. The suitable molar ratio of the input amount of ammonium sulfate to nickel in solution is 2:1. The impurity about 1.4 at.% of Cd was included in the nickel hydroxide precipitates when ammonium nickel sulfate was used. At the process using sodium sulfide which precipitates the cadmium in solution, nickel and iron compounds were precipitated together.