• Title/Summary/Keyword: Ammonia solution

Search Result 366, Processing Time 0.023 seconds

Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils

  • Qin, Wei-Ze;Li, Cheng-Yun;Choi, Seong-Ho;Jugder, Shinekhuu;Kim, Hyun-Ju;Lee, Sang-Suk;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.193-201
    • /
    • 2014
  • This study was conducted to examine the effects of defaunation (removal of live protozoa) on fermentation characteristics, degradation of ryegrass hay and $CH_4$ (methane) production by rumen microbes when incubated with plant oils (SO, sunflower oil and LO, linseed oil) in vitro. Sodium lauryl sulfate (0.000375 g/ml) as a defaunation reagent was added into the culture solution and incubated anaerobically up to 24 h at $39^{\circ}C$. pH from defaunation was increased for all treatments from 6 h incubation times (p<0.01-0.001) compared with those from fauantion. Concentration of ammonia-N from defaunation is higher than that from faunation at 3 h (p<0.001), 12 h (p<0.05) and 24 h (p<0.001) incubation times. Defaunation decreased (p<0.01-0.001) total volatile fatty acid concentration at all incubation times. Molar proportions of $C_2$ (acetate, p<0.05-0.001) and butyrate (p<0.01-0.001) were also decreased by defaunation at all incubation times. Molar proportion of $C_3$ (propionate), however, was increased by defaunation at all incubation times (p<0.001). Thus the rate of $C_2$ to $C_3$ was decreased by defaunation at all incubation times (p<0.001). Defaunation decreased ED (effective degradability) of dry matter (p<0.001) and ED of neutral detergent fiber (p<0.001) of ryegrass hay. Defaunation decreased total gas, $CH_4$ production, $CH_4$ % in total gas and $CH_4/CO_2$ at all incubation times (p<0.001). Oil supplementation decreased total gas (p<0.05-0.001), $CH_4$ production (p<0.001) and $CH_4$ % in total gas (p<0.001) compared with control at all incubation times. The result of this study showed that defaunation combined with oil supplementation may cause an alteration of microbial communities and further medicate the fermentation pattern, resulting in both reduction of degradation of ryegrass hay and $CH_4$ production. No difference, however, was observed in all the examinations between SO and LO.

Studies on the Elimination of Aflatoxin by Various Treatment (각종 처리에 의한 Aflatoxin의 분해에 관한 연구)

  • Lee, Chung-Hee;Chung, Yung-Chai;Chung, Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.201-205
    • /
    • 1973
  • In order to eliminate aflatoxin in foodstuffs, the effects of the treatment by various pH conditions, acid and alkali, and salt on each temperature and time were studied in this experiment and the results were as follows: 1) In the low pH, aflatoxins were much more destroyed than high pH. The destruction of aflatoxins was significantly increased by heat in the same pH levels. 2) BY the treatment of 1.5 and 10% of sodium hydroxide and ammonia, aflatoxins were completely eliminated, but $40{\sim}80%$ of aflatoxins were eliminated by the treatment of 1.5 and 10% of acetic acid, hydrochloric acid and sulfuric acid. 3) By the treatment of aflatoxin in bile acid and artificial gastric juice, aflatoxins were completly eliminated and 75% respectively. 4) By the boiling $(100^{\circ}C)$ for 30 minutes in salt solution, $39{\sim}55%$ of aflatoxins was eliminated and no variation was observed as the concentration.

  • PDF

Quality Characteristic of Saccharified Materials Manufactured from Germinated Barley (발아보리를 이용한 고추장 당화물의 품질특성)

  • Cha, Mi-Na;Yoon, Young;Jang, Seon-A;Song, Geun-Seoup;Kim, Young-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.315-320
    • /
    • 2011
  • Germination conditions were evaluated to obtain barley containing a high content of gamma-aminobutyric acid (GABA), and quality characteristics of saccharified materials manufactured using germinated barley were investigated. Water absorption content of barley increased but pH of the steeping solution decreased with increasing steeping time at all steeping temperatures. The changes in water absorption content and pH were highest at a steeping temperature of $25^{\circ}C$. The highest GABA content was obtained at a steeping condition of $25^{\circ}C$ for 20 h. The highest GABA content was obtained for a germination condition of $5^{\circ}C$ for 36 h after steeping, resulting in an increase of 7.4 times more GABA contents than that in raw material. The pH of saccarified materials decreased but titratable acidity, amino type nitrogen content, and ammonia type nitrogen content increased during the saccharification period. GABA content of saccarified materials increased with increasing saccharification period, resulting in the highest GABA content from saccarified materials containing germinated barley.

Effect of Prebiotics on Intestinal Microflora and Fermentation Products in Pig In Vitro Model

  • Kim, Dong-Woon;Chae, Su-Jin;Cho, Sung-Back;Hwang, Ok-Hwa;Lee, Hyun-Jeong;Chung, Wan-Tae;Park, Jun-Cheal;Kim, In-Cheul;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • The objective of this study was to evaluate the effect of the different types and levels of prebiotics on intestinal microflora and fermentation products in the in vitro fermentation model. The prebiotcs used in this study were IMO (iso-malto oligosaccharide), CI (partially digested chicory-inulin), RA (raffinose) and CD (cyclodextrin). Experimental diet for growing pigs was predigested by digestive enzymes and this hydrolyzed diet was mixed with buffer solution containing 5% fresh swine feces. Then, the mixture was fermented with or without prebiotics at the concentrations of 0.5 and 1.0% for 24 h. Samples were taken at 24 h, and viable count of micoflora, gas, pH, volatile organic compounds and short-chain fatty acids were determined. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments added with prebiotics in comparison to control without prebiotics. However, the increase of lactic acid bacteria was observed in the prebiotics treatment. Gas production increased as the level of prebiotics increased. The pH values in the fermentation fluid decreased in a dose-dependent manner with increasing the concentration of prebiotics. The fermentation with prebiotics resulted in the reduction of malodorous compounds such as ammonia, hydrogen sulfide, indole and skatole. The increase in short-chain fatty acid (SCFA) production was observed in the treatments with prebiotics. In conclusion, the results of this study demonstrated that the fermentation with prebiotics was effective in reducing the formation of malodorous compounds and increasing lactic acid bacteria and SCFA. These effects depended on the concentration of prebiotics. Moreover, further study is needed to determine whether the in vitro efficacy on the reduction of malodorous compounds and increase of SCFA would also be observed in animals.

A Study on the Waste Treatment from a Nuclear Fuel Powder Conversion Plant (핵연료 분말제조 공정에서 발생하는 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyun;Park, Jin-Ho;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1164-1173
    • /
    • 1996
  • Treating methods and characteristics of waste from a nuclear fuel powder conversion plant were studied. To recovery or treat a trace uranium in liquid waste, the ammonium uranyl carbonate(AUC) filtrate must be heated for $CO_2$ expelling, essentially. Uranium content of final treated waste solution from fuel powder processes for a heavy water reactor(HWR) could be lowered to 1 ppm by the lime treatment after the ammonium di-uranate(ADU) precipitation by simple heating. Otherwise, in case of the waste from fuel powder processes for a pressurized light water reactor(PWR), it is result in 0.8 ppm as a form of uranium peroxide such as $UO_4{\cdot}2NH_4F$ compounds. Optimum condition was found at $101^{\circ}C$ by the simple heating method in case of HWR powder process waste. And in case of PWR powder process waste, optimum condition could be obtained by precipitating with adding hydrogen peroxide and adjusting at pH 9.5 with ammonia gas at $60^{\circ}C$ after heating the waste In order to expelling $CO_2$. As the characteristics of recovered uranium compounds, median particle size of ADU was increased with pH increasing in case of HWP waste. Also, in case of uranium proxide compound recovered from PWR waste, the property of $U_3O_8$ power obtained after thermal treatment in air atmosphere was similar to that of the powder prepared from AUC conversion plant.

  • PDF

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

A Study on the Optimum Operating Conditions and Effects of Wastewater Characteristics in Electrochemical Nitrogen Removal Process (질소 제거를 위한 전기화학적 처리 공정의 최적 운전조건 및 폐수 성상에 따른 영향에 관한 연구)

  • Sim, Joo-Hyun;Kang, Se-Han;Seo, Hyung-Joon;Song, Su-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • This study was performed under four operational conditions for nitrogen removal in metal finishing wastewater. The conditions include electrode gap, reducing agent, the recycling of treated wastewater in 1st step and the simultaneous treatment of nitrate and other materials. Result showed that the removal efficiency of $NO_3{^-}-N$ was highest at the electrode gap of 10 mm. As the electrode gap was shorter than 10 mm, the removal efficiency of $NO_3{^-}-N$ decreased due to increasing in concentration polarization on electrode. And, in case that the electrode gap was longer than 10 mm, the removal efficiency of $NO_3{^-}-N$ increased with an increase in energy consumption. Because hydrogen ions are consumed when nitrate is reduced, reducing reaction of nitrate was effected more in acid solution. As 1.2 excess amount of zinc was injected, the removal efficiency of $NO_3{^-}-N$ increased due to increasing in amount of reaction with nitrate. As the effluent from 1st step in the reactor was recycled into the 1st step, the removal efficiency of $NO_3{^-}-N$ increased. Because the zinc were detached from the cathode and concentration-polarization was decreased due to formation of turbulence in the reactor. The presence of $NH_4{^+}-N$ did not affect the removal efficiency of $NO_3{^-}-N$ but the addition of heavy metal decreased the removal efficiency of $NO_3{^-}-N$. As chlorine is enough in wastewater, the simultaneous treatment of nitrate and ammonia nitrogen may be possible. The problem that heavy metal decrease the removal efficiency of $NO_3{^-}-N$ may be solved by increasing current density or using front step of electrochemical process for heavy metal removal.

Nitrate Movement in The Root Zone of Corn Fields with Different Tillage Systems (경운에 따른 옥수수 근권에서의 질산태질소의 이동양상)

  • Kim, Won-Il;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2006
  • Movement of nitrate ($NO_3-N$) through a soil profile under no tillage (NT) or conventional tillage (CT) practices was monitored to identify the effects of tillage systems on nitrate leaching and retention in the soil profile at two commercial farms in central Illinois from 1993 through 1994. Anhydrous ammonia was applied in the 1993 growing seasons, while a mixture of urea and ammonium nitrate solution (URAN) was applied in three separate applications during the spring and early summer of the 1994 season. $NO_3-N$ of each plot through a 100 cm soil depth was found to be significantly high around $20mg\;kg^{-1}$ soil in the early 1993 season. However, downward movement of $NO_3-N$ occurred during the growing season. At the end of growing season, Flanagan and Ipava soils generally retained more $NO_3-N$ through the soil profile for both the CT plots and the NT plots than the Saybrook and Catlin soils. However, there was no significant difference between the nitrate content of the two soil types in each year. $NO_3-N$ content in NT fields were slightly higher than that observed in CT fields throughout the season before harvest. It means that NT plots may reduce the nitrate leaching to the ground water.

Experimental Study on Anti-inflammatory, Antitussive, and Expectoration Effects of Friltillariae Thunbergii Bulbus (절패모(浙貝母)의 항염 및 진해거담 효과에 대한 실험연구)

  • Kim, Jin Hoo;Yang, Won Kyung;Lee, Su Won;Lyu, Yee Ran;Kim, Seung Hyung;Park, Yang Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.339-349
    • /
    • 2020
  • Objective: This study aimed to evaluate anti-inflammatory and antitussive expectoration effects of Friltillariae Thunbergii Bulbus (FTB) in a mouse model. Materials and Methods: To evaluate the anti-inflammatory effects of the FTB, we conducted in vitro experiments using RAW264.7 cells. An MTT assay and enzyme-linked immunosorbent assay (ELISA) were carried out to examine the anti-inflammatory effects of FTB. The expectorant effect on phenol red secretion, the antitussive effect on cough induced by ammonia solution, and leukocyte increased inhibition effects in acute airway inflammation in the animal model were confirmed. Results: FTB did not show cytotoxicity in the experimental group at 10, 30, 50, 100, 300, or 500 ㎍/ml and significantly inhibited the increase of NO, TNF-α and IL-6 in the experimental groups at 30, 50, 100, 300, and 500 ㎍/ml concentrations. In sputum, cough, and acute airway inflammation animal models, FTB significantly increased phenol red secretion in the 400 mg/kg administration group. FTB significantly reduced the number of coughs and significantly increased cough delay time in both 200 and 400 mg/kg dose groups. FTB decreased the white blood cell count in BALF (bronchoalveolar lavage fluid) in the 400 mg/kg administration group. Conclusion: Our study revealed that FTB elicits antitussive and expectorant effects by inhibiting inflammatory cytokines, increasing sputum secretion, suppressing cough, and reducing inflammatory cells. We concluded that FTB is a highly promising agent for respiratory tract infection with therapeutic opportunities.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.