• Title/Summary/Keyword: Amino acid Sequence

Search Result 1,697, Processing Time 0.027 seconds

Sequence Analysis of the Coat Protein Gene of a Korean Isolate of Iris Severe Mosaic Potyvirus from Iris Plant

  • Park, Won-Mok;Lee, Sang-Seon;Park, Sun-Hee;Ju;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • The coat protein gene of iris severe mosaic potyvirus, which was isolated in Korea, ISMV-K, from iris plant was cloned and its nucleotide sequence was determined. The coat protein of the virus contained 252 amino acid residues, including five potential N-glyxosylation site motifs. The coat protein of ISMV-K has 99.1% and 98.4% sequence identities with those of the Netherlands isolate of ISMV (ISMV-Ne) form crocus for the nucleotide and amino acids, respectively. The coat protein of ISMV-K has 50.4% to 60.3% nucleotide sequence identities and 47.3% to 55.7% amino acid identities with those of other 21 potyviruses, indicating ISMV to be a distinct species of the genus. The coat protein of ISMV-K was closely related with bean yellow mosaic virus and clover yellow vein virus in the phylogenetic tree analysis among the potyviruses analyzed. ISMV was easily and reliably detected from virus-infected iris leaves by RT-PCR with a set of the virus-specific primers.

  • PDF

Studies on the Primary Structure of the Alkaline Protease in Neungee [Sarcodon aspratus (Berk.) S. Ito] I. Amino Acid Composition, Chemical Modification and Sequence of the N-terminal Amino Acid (능이[Sarcodon aspratus(Berk.) S. Ito]중 알카리성 단백질가수분해효소의 1차구조에 관한 연구 I. 아미노산 조성, 활성부위 아미노산 및 N-말단 부위의 아미노산 배열)

  • 이태규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.811-814
    • /
    • 1993
  • Properties of a protease purified from Sarcodon asparatus(Berk.) S. Ito have been investigated. The enzyme displays as a glycosylated serine protease. The sequence for the 21 amino acids of the N-terminal side in the enzyme was determined by automated sequence analysis. The sequence was V-T-T-K-Q-T-N-A-P-W-G-L-G-N-I-S-T-T-N-K-L-.

  • PDF

Purification and Characterization of a New Peptidase, Bacillopeptidase DJ-2, Having Fibrinolytic Activity: Produced by Bacillus sp. DJ-2 from Doen-Jang

  • CHOI, NACK-SHICK;YOO, KI-HYUN;HAHM, JEUNG-HO;YOON, KAB-SEOG;CHANG, KYU-TAE;HYUN, BYUNG-HWA;PIL, JAE-MAENG;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2005
  • A new Bacillus peptidase, bacillopeptidase DJ-2 (bpDJ-2), with molecular mass of 42 kDa and isoelectric point (pI) of 3.5- 3.7, was purified to homogeneity from Bacillus sp. DJ-2 isolated from Doen-Jang, a traditional Korean soybean fermented food. The enzyme was identified as an extracellular serine fibrinolytic protease. The optimal conditions for the reaction were pH 9.0 and $60^{\circ}C$. The first 18 amino acid residues of the N-terminal amino acid sequence of bpDJ-2 were TDGVEWNVDQIDAPKAW, which is identical to that of bacillopeptidase F (bpf). However, based on their Nterminal amino acid sequence, molecular size, and pI, it is different from that of bpf and extracellular 90 kDa. The whole (2,541 bp, full-bpDJ-2) and mature (1,956 bp, mature-bpDJ-2) genes were cloned, and its nucleotide sequence and deduced amino acid sequence were determined. The expressed proteins, full-bpDJ-2 and mature-bpDJ-2, were detected on SDSPAGE at expected sizes of 92 and 68 kDa, respectively.

Signal Sequence Prediction Based on Hydrophobicity and Substitution Matrix (소수성과 치환행렬에 기반한 신호서열 예측)

  • Chi, Sang-Mun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.595-602
    • /
    • 2007
  • This paper proposes a method that discriminates signal peptide and predicts the cleavage site of the secretory proteins cleaved by the signal peptidase I. The preprocessing stage uses hydrophobicity scales of amino acids in order to predict the presence of signal sequence and the cleavage site. The preprocessing enhances the performance of the prediction method by eliminating the non-secretory proteins in the early stage of prediction. for the effective use of support vector machine for the signal sequence prediction, the biologically relevant distance between the amino acid sequences is defined by using the hydrophobicity and substitution matrix; the hydrophobicity can be used to Predict the location of amino acid in a cell and the substitution matrix represents the evolutionary relationships of amino acids. The proposed method showed 98.9% discrimination rates from signal sequences and 88% correct rate of the cleavage site prediction on Swiss-Prot release 50 protein database using the 5-fold-cross-validation. In the comparison tests, the proposed method has performed significantly better than other prediction methods.

Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells (임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현)

  • 김현주
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 1998
  • The nascent from of glycosylphosphatidylinositol (GPI)-anchored proteins possesses both amino and carboxy terminal hydrophobic signal sequences to direct processing in the endoplasmic reticulum (ER). Following cleavage of the amino-terminal signal peptide, the carboxy-terminal peptide is processed. Previously, mouse lymphocyte NDA: agrinine ADP-ribosyltransferase (Yac-1) was cloned and the deduced amino acid sequence of the Yac-1 transferase contained hydrophobic amino and carboxy termini, consistent with known signal sequences of GPI-anchored proteins. This tranferase was present on the surface of NMU (rat mammary adenocarcinoma) cells transfected with the wildtype cDNA and was released with phosphatidylinositol-specific phosphilpase C. Expression of the mutant protein, lacking the carboxy terminal hydrophobic sequence, resulted in the peoduction of soluble, secreted from of the transferase. This result shows that carboxy terminal sequence is important for GPI-attachment.

  • PDF

Amino Acid Sequence Studies of Basic Isozyme of Horseradish Peroxidase (서양고추냉이 Peroxidase의 염기성 Isozyme의 아미노산 배열에 관한 연구)

  • 이진영;방병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 1995
  • The amino acid sequence of basic isozyme 55 of Horseradish Peroxidase (HRP E5) was determined by protein sequencing. HRP E5 consisted about 300 residues, and has a molecular weight of approximately 36,000 $\pm$ 500 dalton. The protein was rich In aspartic acid (14%), arginine(13%), and leucine(11%). The primary structure of HRP E5 was established by sequencing its tryptic (T1-T19) and lysylendopeptic (Al-A3) peptides. The sequence homology between HRP E5 and HRP C (neutral isozyme of horseradish peroxidase) is found to be more than 66%. The highest concentration of identical residues are found on residues 29~56, 90~123, and 155~173, but relatively low on 174~271.

  • PDF

New Degenerate Primer for the Cyanobacterial Non-ribosomal Peptides (시아노박테리아 Non-ribosomal Peptides의 효과적인 연구를 위한 New Degenerate Primer의 개발)

  • Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.362-365
    • /
    • 2007
  • Cyanobacteria have been identified as one of the most promising group producing novel biochemically active natural products. Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Large multienzyme complexes which are responsible for the non-ribosomal biosynthesis of peptides are modular for the addition of a single amino acid. An activation of amino acid substrates results in an amino adenylate occuring via an adenylation domain (A-domain). A-domains are responsible for the recognition of amino acids as substrates within NP synthesis. The A-domain contains ten conserved motifs, A1 to A10. In this study, ten conserved motifs from A1 to A10 were checked regarding their amino acid sequence of the NRPS-module of Microcystis aeruginosa PCC 7806. The part of the amino acid sequence chosen was that which contained as many conserved motives as possible, and then these amino sequence were compared between other cyanobacteria to design a new degenerate primer. A new degenerate primer (A3/A7 primer) was designed to detect any putative NP synthetase region in unkwon cyanobacteria by a reverse translation of the conserved amino acid sequence and a search for cyanobacterial DNA bank.

Structural and Functional Importance of Two Glutamate Residues, Glu47 and Glu146, Conserved in N-Carbamyl D-Amino Acid Amodohydrolases

  • Oh, Ki-Hoon;Kim, Geun-Joong;Park, Joo-Ho;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • The mutant enzymes of N-carbamyl-D-amino aicd amidohydrolase (N-carbamylase) from Agrobacterium radiobacter NRRL B11291, showing a negligible activity, were selected from the library generated by random mutagenesis. From the sequence analysis, these mutants were found to contain the amino acids substitutions at Cys172, Glu47, and Glu146. Previously, Cys172 was reported to be necessary for the enzyme catalysis. The chemical modification of the N-carbamylase by carboxyl group specific chemical reagent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC), resulted in a loss of activity. The replacement of glutamic acids with glutamines by site-directed mutagenesis led to aggregation of the enzymes. Mutant enzymes fused with maltose binding protein (MBP) were expressed in soluble form, but were inactive. These results indicate that two glutamic acid residues play an important role in structure and function of the N-carbamylase. Multiple sequence alignment of the related enzymes revealed that Glu47 and Glu146 are rigidly conserved, which suggests that tese residues are crucial for the structure and function of the functionally related C-N hydrolases.

  • PDF

Gene Identification and Molecular Characterization of Solvent Stable Protease from A Moderately Haloalkaliphilic Bacterium, Geomicrobium sp. EMB2

  • Karan, Ram;Singh, Raj Kumar Mohan;Kapoor, Sanjay;Khare, S.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • Cloning and characterization of the gene encoding a solvent-tolerant protease from the haloalkaliphilic bacterium Geomicrobium sp. EMB2 are described. Primers designed based on the N-terminal amino acid sequence of the purified EMB2 protease helped in the amplification of a 1,505-bp open reading frame that had a coding potential of a 42.7-kDa polypeptide. The deduced EMB2 protein contained a 35.4-kDa mature protein of 311 residues, with a high proportion of acidic amino acid residues. Phylogenetic analysis placed the EMB2 gene close to a known serine protease from Bacillus clausii KSM-K16. Primary sequence analysis indicated a hydrophobic inclination of the protein; and the 3D structure modeling elucidated a relatively higher percentage of small (glycine, alanine, and valine) and borderline (serine and threonine) hydrophobic residues on its surface. The structure analysis also highlighted enrichment of acidic residues at the cost of basic residues. The study indicated that solvent and salt stabilities in Geomicrobium sp. protease may be accorded to different structural features; that is, the presence of a number of small hydrophobic amino acid residues on the surface and a higher content of acidic amino acid residues, respectively.

Purification and Characterization of Cop, a Protein Involved in the Copy Number Control of Plasmid pE194

  • Kwak, Jin-Hwan;Kim, Jung-Ho;Kim, Mu-Yong;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 1998
  • Cop protein has been overexpressed in Escherichia coli using a T7 RNA polymerase system. Purification to apparent homogeneity was achieved by the sequential chromatography on ion exchange, affinity chromatography, and reverse phase high performance liquid chromatography system. The molecular weight of the purified Cop was estimated as 6.1 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). But the molecular mass of the native state Cop was shown to be 19 kDa by an analytical high performance size exclusion chromatography, suggesting a trimer-like structure in 50 mM Tris-HCI buffer (pH 7.5) containing 100 mM NaCl. Cop protein Was calculated to contain $39.1% {\alpha}-helix, 16.8% {\beta}-sheet$, 17.4% turn, and 26.8% random structure. The DNA binding property of Cop protein expressed in E. coli Was preserved during the expression and purification process. The isoelectric point of Cop was determined to be 9.0. The results of amino acid composition analysis and N-terminal amino acid sequencing of Cop showed that it has the same amino acid composition and N-terminal amino acid sequence as those deduced from its DNA sequence analysis, except for the partial removal of N-terminal methionine residue by methionyl-aminopeptidase in E. coli.

  • PDF