Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells

임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현

  • 김현주 (울산대학교 생명과학부)
  • Published : 1998.02.01

Abstract

The nascent from of glycosylphosphatidylinositol (GPI)-anchored proteins possesses both amino and carboxy terminal hydrophobic signal sequences to direct processing in the endoplasmic reticulum (ER). Following cleavage of the amino-terminal signal peptide, the carboxy-terminal peptide is processed. Previously, mouse lymphocyte NDA: agrinine ADP-ribosyltransferase (Yac-1) was cloned and the deduced amino acid sequence of the Yac-1 transferase contained hydrophobic amino and carboxy termini, consistent with known signal sequences of GPI-anchored proteins. This tranferase was present on the surface of NMU (rat mammary adenocarcinoma) cells transfected with the wildtype cDNA and was released with phosphatidylinositol-specific phosphilpase C. Expression of the mutant protein, lacking the carboxy terminal hydrophobic sequence, resulted in the peoduction of soluble, secreted from of the transferase. This result shows that carboxy terminal sequence is important for GPI-attachment.

Gltcosylphosphatidylinositol (GPI)에 의해 고정된 단백질의 초기 형태는 골지체에서의 직접적인 processing을 수행하기 위한 아미노와 카르 복시 말단의 hydrophobic signal sequence를 소유하고 있다. 앞서, mouse 임파구로부터 NAD;arginine ADP-ribosyltransferase (Yac-1)가 클로닝되었으며 Yac-1 transferase의 아미노산 배열을 추정해 본 결과, hydrophobic 아미노와 카르복시 말단을 포함하고 있었으며 이는 GPI-anchroed 단백질들의 알려진 signal sequence와 일치하였다. 미 transferase는 야생형의 cDNA로 transfection된 NMU (rat mammary adenocarcinoma) cell의 표면에 존재하였으며 phosphoatidylinosotol-specific phospholipase C에 의해 방출되어졌다. 카르복시 말단의 hydrophobic sequence가 없는 돌연변이체는 수용성이며 분비성인 transferase를 생산하였다. 이러한 사실은 카르복시 말단의 sequence가 없는 돌연변이체는 수용성이며 분비성인 transferase를 생산하였다. 이러한 사실은 카르복시 말단의 sequence가 GPI의 부착에 중요함을 나타내준다.

Keywords

References

  1. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction Williamson, K.C.;Moss, J.;Moss, J.(eds.);Vaughn, M.(eds.)
  2. Proc. Natl. Acad. Sci. U.S.A. v.82 Covalent modification of the iron protein of nitrogenase form Phodospirllum rubrum by adenosine diphosphoribosylation of a specific arginine residue Pope, M.R.;Murrell, S.A.;Ludden, P.W.
  3. Engogenous ADP-ribosylation in procaryotes Lowry, R.G.;Ludden, P.W.;Moss, J.(eds.);Vaughan, M.(eds.)
  4. Virology v.203 The ADP-ribosyltransferases (gpAlt) of bacteriophages T₂,T₄and $T_6$: sequencing of the genes and comparison of their products Koch, T.;Ruger, W.
  5. Adv. Enzymol. v.61 ADP-ribosylation of guanyl nucleotide-binding proteins by bacterial toxins Moss, J.;Vaughan, M.
  6. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction Collier, R.J.;Moss, J.(eds.);Vaughan, M.(eds.)
  7. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction Ui, M.;Moss, J.(eds.);Vaughan, M.(eds.)
  8. Bacterial toxins. v.4 Pseudomonas toxins In Handbook of natural toxins Iglewski, B.H.;Hardegree, C.(eds.);Tu, A.T.(eds.)
  9. ADP-ribosylating Toxins and G Proteins Insights into Signal Transduction Wick, M.J.;Iglewsik, B.H.;Moss, J.(eds.);Vaughan, M.(eds.)
  10. Proc. Nat. Acad. Sci. U.S.A. v.89 Molecular characterization of NAD: arginine ADP-ribosyltransferase form rabbit skeletal muscle Zolkiewska, A.;Nightingale, M.S.;Moss, J.
  11. Biochemistry v.33 Immunological and structural conservation of mammalian skeletal muscle glycosylphos-phatidylinositol-linked ADP-ribosyltransferases Okasaki, I.J.;Zolkiewska, A.;Nightingale, M.S.;Moss, J.
  12. J. Biol. Chem. v.269 Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken lone marrow cells Tsuchiya, M.;Hara, M.;Yamada, K.;Osago, H.;Shimoyama, M.
  13. Gene v.164 Sequence of a chicken erythroblast mono(ADP-ribosyl) transferase-encoding gene and its upstream region Davis, T.;Shall, S.
  14. Blood. v.88 Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes Okazaki, I.J.;Kim, H.-J.;McElvaney, G.;Lesma, E.;Moss, J.
  15. J. Biol. Chem. v.271 Cloning and characterization of a novel membrane-associated lymphocyte NAD: arginine ADP-ribosyltransferase Okazaki, I.J.;Kim, H.-J.;Moss, J.
  16. J. Biol. Chem. v.268 Integrin μ7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells Zolkiewska, A.;Moss, J.
  17. Exp. Cell Res. v.210 Effect of an arginine-specific ADP-ribosyltransferase inhibitor on differentiation of embryonic chicken skeletal muscle cells in culture Kharadia, S.V.;Huiatt, T.W.;Haung, H.-Y.;Peterson, J.E.;Graves, D.J.
  18. Annu. Rev. Biochem. v.57 Cell-surface anchoring of proteins via glycosylphosphtidylinositol structures Ferguson, M.A.;Williams, A.F.
  19. PCR Protocols A guide to Methods and Applications Higuchi, R.;Innis, M.AA.(eds.);Gelfand, D.H.(eds.);Sninsky, J.J.(eds.);White, T.J.(eds.0
  20. Current Protocols in Molecular Biology Ausubel, F.;Brent, R.;Kingston, R.E.;Moore, D.D.;Seidman, J.G.;Smith, J.A.;Struchl, K.
  21. FASEB J. v.3 Glycosyphosphatidylinositol : a versatile anchor for cell surface proteins Low, M.G.
  22. J. Biol. Chem. v.267 Phosphatidylinositol glycan(PI-G) anchored membrance proteins Gerber, L.D.;Kodukula, K.;Udenfriend, S.