• 제목/요약/키워드: Aluminum Clad

검색결과 57건 처리시간 0.024초

Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향 (Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials)

  • 배동현;정수정;조영래;정원섭;정호신;강창룡;배동수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

온간금형에 의한 클래드판재(STS304-A1050-STS304)의 드로잉성 연구 (A Study on the Drawability of Clad Sheet Metal (STS304-A1050-STS304) by Warm Draw Die)

  • 류호연;김종호;류제구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.136-143
    • /
    • 2002
  • Warm draw die technique which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical and square cup drawing of stainless-aluminum clad sheets. In experiments the temperature of die and blank holder is varied from room temperature to $180^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch comer area. Test materials chosen for experiments are STS304-A1050-STS304 clad sheets. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio and relative drawing depth as well as quality of drawn cups(distribution of thickness)are investigated and validity of warm drawing process is also discussed. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant remover and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과 (Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties)

  • 송준영;김인규;이영선;홍순익
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

가요성 알루미늄피 케이블을 이용한 인플렉스 시스템의 개발 (Development of In-Flex System using the Flexibility Aluminum Clad Cable)

  • 정순원;구경완
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.178-183
    • /
    • 2009
  • The developed in-flex system completed the wiring work with the plug-in connection. To maintain electrical and mechanical stability, and an insulation between the conductors was strengthened by forming a partition. Moreover, the error according to a bad connection was prevented by separating the inlet from the outlet of the electric trace and thus the quick construction become possible. The metal reinforcing material was added outside the upper case and lower case. The fire-resistance efficiency was maximized in order to minimize a damage by the fire. As to the developed system, we found that it takes shorter time to complete installation than the rigid steel conduit wiring work, and that about 25 % of construction cost was saved because the labor costs decrease due to the shorter construction period of time.

스테인리스강과 알루미늄 롤-클래드 시 변형상태 연구 (Study on Strain States during Roll-Cladding of Stainless Steel and Aluminum)

  • 김종국;허무영;지광구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.221-224
    • /
    • 2004
  • The clad samples of five plies of sheets comprising ferritic stainless steel (STS) and aluminum (Al) were prepared by roll-cladding at $350^{\circ}C$. The evolution of strain states and textures during roll-cladding of STS430/AA3003/AA3003/AA3 003/STS430 and STS430/AA3003/STS430/AA3003/STS430 was investigated by measurements of crystallographic textures and by simulations with the finite element method (FEM). Because the deformation mainly occurs in the Al layer during roll-cladding, the present investigation was focused on the Al layers located. The stacking sequence of sheet materials in the clad samples played an important role in the evolution of strain states during roll-cladding.

  • PDF

스테인리스 강 클리드 알루미늄 판재의 일축인장시 변형거동 (EEFORMATION BEHAVIOR OF STAINLESS STEEL-CLAD ALUMINUM SHEET METALS UNDER UNIAXIAL TENSION)

  • 최시훈;김근환;오규환;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.69-75
    • /
    • 1995
  • The deformation behavior of stainless steel-clad aluminum sheet metals under uniaxial tension has been investigated. The differences in mechanical properties such as elastic modulus, flow stress and plastic strain ratio, of component layers of the composite sheet gave rise to warping of the tensile specimens. The warping has been analyzed by FEM and the total force and momentum equilibria. The analyzed radii of curvature of the warped specimens were smaller than the measured data possibly due to elastic recovery during unloading. The differences in mechanical properties may also give rise to transverse stresses in the component layers. The transverse stresses have been analyzed on the assumption of isostrain and by the FEM in which the warping has been taken into account. The transverse stresses calculated by the FEM were lower than those by the isostrain hypothesis due to stress relaxation by the warping and turned out to be negligible compared with the longitudinal stresses. Consequently, the flow stresses of the composite sheets follow the rule of mixtures.

  • PDF

스테인레스-알루미늄 클래드 강판재의 프레스 온간 성형 연구 (A Study on the press warm forming of stainless-aluminum clad sheet metals)

  • 류호연;박건규;김종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 금형가공 심포지엄
    • /
    • pp.8-18
    • /
    • 1998
  • The effect of press warm forming in cylindrical deep drawing of stainless-aluminum clad sheet metals are examined . The temperature of die and blank holder is varied from room temperature to 20$0^{\circ}C$, while the punch is kept cooled during test to increase the fracture strength of workpiece on the punch corner area. Test materials chosen for experiments are STS304-Al050-STS304, STS304-A1050-STS430-, STS304 and Al050 metals and teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ration as well as quality of drawn cups (distribution of thickness and hardness)are investigated and discussed.

  • PDF

굽힘시험시의 Mg/Al/STS 3층 클래드재의 변형 및 파단특성 분석 (Failure and Deformation Analyses of 3-ply Mg/Al/STS Clad-Metalin Bending)

  • 김인규;송준영;오기환;홍순익
    • 대한금속재료학회지
    • /
    • 제50권5호
    • /
    • pp.345-351
    • /
    • 2012
  • A three-point bending test was performed on roll-bonded Mg/Al/STS clad-metal plates under two different testing conditions (Mg layer in tension, or STS in tension) and their mechanical response and fracture behavior were investigated. Bending strength was found to be greater under the condition of Mg layer in tension. Heat treatment at $200^{\circ}C$ increased the bending formability, suggesting the interfacial strength increased at $200^{\circ}C$. Under the condition of Mg in tension, the clad heat-treated at $300^{\circ}C$ and $400^{\circ}C$ fractured in two steps, with the first step associated with the interfacial fracture between Mg and Al, and the second the fracture of the Mg layer. STS/Al layers were found to be bent without complete fracture. Under the condition of STS in tension, the clad heat-treated at $300^{\circ}C$ and $400^{\circ}C$ exhibited a very small load drop at the displacement, which is similar to that of the first load drop associated with the interfacial fracture under the condition of Mg in tension. In this case, no interfacial cracks were found and the complete cut-through fracture of clad was observed at low temperature heat treatment conditions, suggesting excellent interfacial strength. When the heat treatment temperature was higher than $300^{\circ}C$, interfacial cracks were observed. The local stress condition and the position of the interface with respect to the surface were found to have a great influence on the fracture behaviors of clad metals.

Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향 (Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal)

  • 김인규;송준영;이영선;홍순익
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.

STS/Al/Cu 클래드재의 파괴거동 및 기계적 물성에 미치는 인장시험 온도의 영향 (Effect of Tension-Test Temperature on Fracture Behavior and Mechanical Properties in STS/Al/Cu Clad Materials)

  • 배동현;최영준;정원섭;배동수;조영래
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.811-818
    • /
    • 2009
  • In order to meet increasingly complex and rigorous technical specifications, extensive effort has been devoted to fabricate clad materials with multi-layered metal plates. In this study, novel stainless steel/aluminum/copper (STS/Al/Cu) three-ply clad materials were fabricated by a hot rolling process for cookware applications. The effect of the testing temperature on the mechanical properties of the clad materials and on each component metal was investigated during the tensile tests. The interface properties of the clad materials were also examined by optical microscopy (OM) and an electron probe micro-analyzer (EPMA). The best mechanical and interfacial properties for a warm working process were found in a sample annealed at a temperature of $300^{\circ}C$. For the sample annealed at $400^{\circ}C$, the results of the tensile test indicated that interface delamination occurred only in the region of the Al/Cu interfaces. This was due to the formation of the thick and brittle intermetallic compound of $Al_2Cu$ in the Al/Cu interface. In contrast, no interface delamination was observed in the STS/Al interface, most likely due to its strong bond strength.