DOI QR코드

DOI QR Code

Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties

압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과

  • Song, Jun-Young (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Kim, In-Kyu (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Lee, Young-Seon (Korea Institute of Materials Science, Materials Deformation Group) ;
  • Hong, Sun Ig (Department of Advanced Materials Engineering, Chungnam National University)
  • 송준영 (충남대학교 나노소재공학과) ;
  • 김인규 (충남대학교 나노소재공학과) ;
  • 이영선 (재료연구소 변형제어그룹) ;
  • 홍순익 (충남대학교 나노소재공학과)
  • Received : 2011.04.08
  • Published : 2011.11.25

Abstract

The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. D. Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000). https://doi.org/10.1016/S0921-5093(99)00653-X
  2. H. D. Manesh and A. K. Taheri, Mater. Design. 24, 617 (2003). https://doi.org/10.1016/S0261-3069(03)00135-3
  3. K. J. Min, M. H. Jeong, K. H. Lee, Y. S. Jeong, and Y. B. Park, J. Kor. Inst. Met. & Meter. 47, 675 (2009).
  4. Y. M. Hwang, H. H. Hso, and H. J. Lee, Int. J. Mech. Sci. 37, 297 (1995). https://doi.org/10.1016/0020-7403(95)93522-8
  5. J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee, and Y. R. Cho, J. Mater. Process. Technol. 187-189, 546 (2007).
  6. H. D. Manesh and A. K. Taheri, J. Alloys Comp. 361, 138 (2003). https://doi.org/10.1016/S0925-8388(03)00392-X
  7. D. H. Bae, S. J. Jung, Y. R. Cho, W. S. Jung, H. S. Jung, C. Y. Kang, and D. S. Bae, J. Kor. Inst. Met. & Mater. 47, 573 (2009).
  8. S. H. Choi, K. H. Kim, K. H. Oh, and D. N. Lee, Mater. Sci. and Eng. A 222. 158 (1997). https://doi.org/10.1016/S0921-5093(96)10514-1
  9. T. Mori and S. Kurimoto, Trans. ASME 120, 179 (1998). https://doi.org/10.1115/1.2834406
  10. D. S. Bae, S. K. Kim, S. P. Lee, T. Shibayama, and D. H. Bae, Key Eng. Mater. 345-346, 1497 (2007). https://doi.org/10.4028/www.scientific.net/KEM.345-346.1497
  11. T. Mori and S. Kuromoto, J. Mater. Process. Technol. 56, 242 (1996). https://doi.org/10.1016/0924-0136(95)01838-7
  12. K. Y. Rhee, W. Y. Han, H. J. Park, and S. S. Kim, Mater. Sci. Eng. A. 384, 70 (2004). https://doi.org/10.1016/j.msea.2004.05.051
  13. ASM Handbook, Alloy phase Diagrams, ASM International Alloy Phase Diagram and Handbook Committees, Materials Park, Ohio, USA, 2.44(1992).