• Title/Summary/Keyword: Altitude Control

Search Result 418, Processing Time 0.027 seconds

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

Integrated Air Traffic Simulations of Manned and Remotely Piloted Aircraft (유무인항공기 통합 시뮬레이션 연구)

  • Oh, Hyeju;Park, Bae-Seon;Choi, Keeyoung;Lee, Hak-Tae;Jung, Hyun-Tae;Moon, Woo-Choon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2015
  • With the rapid growth of technologies and demand of remotely piloted aircraft systems (RPASs), integration of such systems into the existing airspace is becoming an issue in many countries. To assess the impact of integrated operations of manned and remotely piloted aircraft (RPA), it is necessary to perform Human-in-The-Loop (HiTL) simulations of likely situations with an integrated simulation system. This paper defines several operational concepts for the integrated simulation. Several probable scenarios were developed including a traffic pattern at a small airport and an altitude maneuver at a route crossing. HiTL simulations were performed according to the developed scenarios. The simulation results are analyzed focusing on the impacts of different communication, safety, performance, and human machine interface (HMI) characteristics of RPA.

Monitoring the Vegetation Coverage Rate of Small Artificial Wetland Using Radio Controlled Helicopter (무선조종 헬리콥터를 이용한 소규모 인공 습지의 식생피복율 변화 모니터링)

  • Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.81-89
    • /
    • 2006
  • The purpose of this study was to evaluate the applicability of small RC(radio controlled) helicopter and single lens reflect camera as SFAP(Small Format Aerial Photography) aquisition system to monitor the vegetation coverage of wetland. The system used to take pictures of small artificial wetland were a common optical camera(Nikon F80 with manual lens whose focal length was 28mm) attached to the bottom of a RC helicopter with a 50 cubic inch size glow engine. Three hundreds pictures were taken at the altitude of 50m above the ground, from 23rd June to 7th September 2005. Four from the images were selected and scanned to digital images whose dimension were 2048${\times}$1357 pixels. Those images were processed and rectified with GCP(Ground Control Poins) and digital map, and then classified by the supervised- classification module of image processing program PG-steamer Version 2.2. The major findings were as follows ; 1. The final images processed had very high spatial resolution so that the objects bigger than 30mm like lotus(Nelumbo nucifera), rock and deck were easily identified. 2. The dominant plants of the monitoring site were Monochoria ragianlis, Typha latifolia, Beckmannia syzigachne etc. Because those species have narrow and long leaves and form irregular biomass, the individuals were hardly identifiable, but the distribution of population were easily identifiable depending on the color difference. 3. The area covered by vegetation was rapidly increased during the first month of monitoring. At the beginning of the monitoring 23th June 2005, The rate of area covered by vegetation were only 34%, but after 27 and 60 days it increased to 74%, and the 86% respectively.

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Development of a Motor Speed Controller of Drones Considering Voltage Drop of Battery (배터리 전압 강하를 고려한 드론 모터 속도 제어기 개발)

  • Lee, Sunghee;Yun, Bo Ram;Kim, Deok Yeop;Kim, Hwangsoo;Lee, Woo Jin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.601-606
    • /
    • 2017
  • Recently, we have frequently encountered flying drones with the growth of drone industry. However, it is difficult for a driver to stabilize the motor speed of drones, since the voltage of a Lithium polymer battery used in drones may suddenly drop or rise when its power is exhausted. The instability of the motor speed precludes the drone from maintaining a flight altitude, so that the fuselage of a drone performs ascending and descending repeatedly. For solving this problem, existing techniques either add a compensator considering voltage drop of battery or change the control model. Since these techniques use hardware-implemented modules or depend on motor type and experimental results, there is a problem that new suitable modules should be implemented in accordance with the used motor of the fuselage. For solving this problem, in this paper, we implement a motor speed controller in the firmware of drones by considering voltage drop of battery to enhance drone flight stability.

Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성)

  • Noh, Seonghyeon;Kim, Jihong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • This paper describes how to apply one-dimensional simulation to predict unsteady state characteristics of the cold-gas pintle thruster. Mass flow rate, chamber pressure, and nozzle exit pressure are key parameters for thrust control. Chamber pressure rose and fell monotonously with the pintle stroke variation, while thrust variation was different from chamber pressure variation. During the forward pintle stroke operation, the thrust value tended to decrease initially and returned to increase when pintle speed and chamber free volume exceed some specified value. Even though one-dimensional simulation has the limitations to predict unsteady state characteristics, it is still useful for initial performance assessment of various thrusters which adopt an altitude compensation nozzle such as a dual-bell nozzle, prior to experiment or numerical analysis.

Prediction for Large Deformation of Cantilever Beam Using Strains (변형률을 이용한 외팔보의 구조 대변형 예측)

  • Park, Sunghyun;Kim, In-Gul;Lee, Hansol;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.396-404
    • /
    • 2015
  • The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF

Prevention of Insulation Damage Layer and Shell Corrosion in Thermal Storage Tanks for District Heating (지역난방용 축열조의 단열재 손상과 외각부식 개선방안)

  • Bang, Yong-Eoon;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.10 no.4
    • /
    • pp.35-41
    • /
    • 2014
  • The height and capacity of the thermal storage tank can be decided by the altitude and heat load of the heat supply area. Evaporation in heat pipe can be prevented by pressurizing it with the hydraulic head of the thermal storage tank. In addition, it absorbs the expanded volume from the temperature changes and supplies water to the pipelines in case of the shortage of water. One of the most important roles of the thermal storage tank is a stable heat supply facility. It can control the heat demand by accumulating the surplus heat and supplying in changing heat demand time. The purpose of this thesis is to be helpful for the operation and maintenance of the thermal storage tanks. The study has been carried out for 18 thermal storage tanks, which have been used polyurethane foam as insulation, among 27 tanks in district heating plants. The characteristics of the insulation materials, the reasons for the damages of the insulation and how impact the insulation damages to the corrosion of the thermal storage tank have been studied.

  • PDF