• Title/Summary/Keyword: Alloy composition

Search Result 743, Processing Time 0.023 seconds

Effect of Plating Condition and Surface on Electroless Co-Cu-P Alloy Plating Rate (무전해 Co-Cu-P 도금속도에 미치는 도금 조건과 표면상태의 영향)

  • Oh, L.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2000
  • Relationships between the plating condition and the plating rate of the deposition film for the electroless plating of Co-Cu-P alloy were discussed in this report. The result obtained from this experiment were summarized as follow ; The optimum bath composition was consisted of 0.8 ppm thiourea as a stabilizing agent. Composition of the deposit was found to be uniform after two hours of electroless plating. Plating rates of nickel-catalytic surface and zincate-catalytic surface were found to be very closely equal, but the plating time of nickel-catalytic surface took longer than that of the zincated-catalytic surface.

  • PDF

Electrical Properties of Temperature Coefficient of Resistance and Heat Radiation Structure Design for Shunt Fixed Resistor (저항 온도계수와 방열 구조설계에 따른 션트 고정 저항의 전기적 특성)

  • Kim, Eun Min;Kim, Hyeon Chang;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.107-111
    • /
    • 2018
  • In this study, we designed the temperature coefficient of resistance (TCR) and heat radiation properties of shunt fixed resistors by adjusting the atomic composition of a metal alloy resistor, and fabricated a resistor that satisfied the designed properties. Resistors with similar atomic composition of copper and nickel showed low TCR and excellent shunt fixed resistor properties such as short-time overload, rated load, humidity load, and high temperature load. Finally, we expect that improved sensor accuracy will be obtained in current-distribution-type shunt fixed resistor for IoT sensors by designing the atomic composition of the metal alloy resistor proposed in this work.

A Study on the Effect of Corrosion Resistance According to the Composition Variety of C, Cr, N in Duplex Stainless Steel

  • Kim, Hyeong-Jin;Cho, Kye-Hyun;Jung, Jae-young
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.179-186
    • /
    • 2004
  • Recently the alloy development of duplex stainless steel has been done. On this study we studied the effect of the corrosion resistance according to the composition variety of C, Cr, N in the alloy elements of duplex stainless steel. materials which have below 0.1[mm/year] corrosion rate enable to use for corrosion-resisting materials, generally. On this experiment we inspected the effect of the composition variety of C, Cr, N in duplex stainless steel and the heat treatment, which the condition was the water quenching after the heat treatment for 1hr. The experiment was done on the basis of the ASTM G48A test, Critical pitting temperature(CPT), and ASTM G-61(Electrochemical tests for cyclic polarization).

Morphology and Segregation of Sulfide Inclusions in Cast Steels (II) (Influence of [Mn/S] Ratios on the Morphology of Sulfide Inclusions in Fe-Mn-S Alloys) (주강의 유화물 형태와 편석에 대한 연구 (II) (Fe-Mn-S 합금의 유화물 형태에 미치는 Mn/S비의 영향))

  • Park, Heung-Il;Kim, Ji-Tae;Kim, Woo-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.270-276
    • /
    • 2009
  • After casting button-type small ingots of ternary Fe-Mn-S alloys which had three different Mn/S ratios (1, 5 and 70) in a vacuum arc furnace, the effect of the ratio on the sulfide formation was investigated. In case of the Mn/S ratio of 1, if alloy composition was located in an iron-rich corner on a Fe-Mn-S ternary phase diagram, only duplex MnS-FeS sulfide films were observed in the grain boundary. If the alloy composition was located in the miscibility gap area of the phase diagram, primary globular dendritic sulfides and dendritic sulfide slags were generated within the grain and tubular monotectic sulfides were also detected in the grain boundary. When the Mn/S ratio was 5, if the alloy composition was in the iron-rich corner, only bead-like sulfides were generated. On the other hand, if the composition was in the miscibility gap area, globular dendritic sulfides and dendritic sulfide slags were generated in the form of primary sulfide inclusions and rod-like eutectic sulfides were observed in the grain boundary. Especially, if the contents of Mn and S increased more in the miscibility gap area of the phase diagram, primary globular sulfides containing iron intrusions were observed. In case of Mn/S ratio of 70, if the contents of Mn and S was decreased in the Fe corner of the phase diagram, only bead-like sulfides were observed in the grain boundary. Despite the composition was outside the miscibility gap area of the phase diagram, if the contents of Mn and S increased, clusters of fine sulfide particles as well as fine spherical primary monophase sulfides were observed in the grain boundary.

Mechanical Properties and Shape Memory Characteristics of NiAl Alloys by Powder Metallurgy (분말야금법으로 제작한 NiAl합금의 기계적성질 및 형상기억특성)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • The composition of martensite transformation in NiAl alloy is determined using pure nickel and aluminum powder by vacuum hot press powder metallurgy, which is a composition of martensitic transformation, and the characteristics of martensitic transformation and microstructure of sintered NiAl alloys are investigated. The produced sintered alloys are presintered and hot pressed in vacuum; after homogenizing heat treatment at 1,273 K for 86.4 ks, they are water-cooled to produce NiAl sintered alloys having relative density of 99 % or more. As a result of observations of the microstructure of the sintered NiAl alloy specimens quenched in ice water after homogenization treatment at 1,273 K, it is found that specimens of all compositions consisted of two phases and voids. In addition, it is found that martensite transformation did not occur because surface fluctuation shapes did not appear inside the crystal grains with quenching at 1,273 K. As a result of examining the relationship between the density and composition after martensitic transformation of the sintered alloys, the density after transformation is found to have increased by about 1 % compared to before the transformation. As a result of examining the relationship between the hardness (Hv) at room temperature and the composition of the matrix phase and the martensite phase, the hardness of the martensite phase is found to be smaller than that of the matrix phase. As a result of examining the relationship between the temperature at which the shape recovery is completed by heating and the composition, the shape recovery temperature is found to decrease almost linearly as the Al concentration increases, and the gradient is about -160 K/at% Al. After quenching the sintered NiAl alloys of the 37 at%Al into martensite, specimens fractured by three-point bending at room temperature are observed by SEM and, as a result, some grain boundary fractures are observed on the fracture surface, and mainly intergranular cleavage fractures.

Microstructure of Zn-Ni Alloy Electrodeposir (아연-니켈합금전착층의 조직특성)

  • 예길촌;최성렬;신현준;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 1988
  • The variation of Composition and the microstructure of Zn-Ni alloy electrodespposits were investigated to the electrolysis conditions chloride bath. The codeposition mechanism is of the equilibrium type in the electrolysis condition of the high temperature(6$0^{\circ}C$)and high flow rate (1.2-3.0m/sec). The(411, 330) perferred orienation was mainly developed in the Zn-Ni electrodeposir with ${\gamma}$-phase structure, while the(422.600) orientation was closely related to the commposition and the structure of the alloy electrodeposit.

  • PDF

The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product (Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향)

  • Jeon, Taeg-Jong;Ko, Jun-Bin;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

MATERIALS AND DETECTORS BASED ON GaInAs GROWN BY HYDRIDE VPE TECHNIQUE UTILIQUE UTILIZING A Ga/IN ALLOY SOURCE

  • Park, Chin-Ho;Tiothy J.Anderson
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.168-173
    • /
    • 1995
  • $GaxIn{1_x}As$ epitaxial layers were grown by a simplified hydrode vapor phase epitaxy(VPE) method bsed on the utilization of Ga/In alloy as the source metal. The effects of a wide range of experimental variables(i.e.,inlet mole fraction of HCI, deposition temperature, Ga/In alloy composition) on the ternary composition and growth rate were investigated. Layers of $Ga_{0.47}In_{0.53}As$ lattice matched to InP were successfully grown from alloys containing 5 to 8 at.% Ga. These layers were used to produce state-of-the art p-i-n photodetectors having the following characteristics: dark current, $I_d$(-5V) = 10-20 nA: responsivity, R=0.84-0.86 A/W; dark current, Id(-5V)=10-20 nA; responsivity, R=0.84-0.86 A/W; capacitance, C=0.88-0.92 pF; breakdown voltage, $V_b$ >40V. This study demonstrated for the first time that a simplified hydride VPE process with a Ga/In alloy source is capable of producing device quality epitaxial layers.

  • PDF

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

Effect of In on Surface Behaviors of Porcelain-Metal Boundary in Low Gold Porcelain Alloys (도재소부용 저금함유금합금에서 도재계면의 표면거동에 미치는 미량원소 In의 영향)

  • Nam, S.Y.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 1999
  • This study was carried out by observing to composition of oxide on the surface of dental porcelain low gold alloy with various Indium additions according to the degassing and analysing the change composition of additional elements In on diffusion behaviors of Porcelain-matal surface. The specimens used were Au-Pd-Ag alloys by small indium addition. These specimens were treated for 10min at $1000^{\circ}C$ in vacuum condition. To investigate the microsturcture of oxidized alloy surface, SEM and EDAX were used, and EPMA were used to investigate the diffusion behaviors of porcelain-metal surface. X-ray diffraction were used to observe the morphological changes in the oxidation zone. The results of this study were obtained as follows ; 1) The hardness of alloy increased with increasing amount of In addition. 2) The formation of oxidation increased with increasing In content after heat treatment. 3) Diffusion of indium elements increased with increasing In content in metal-porcelain surface after firing. 4) The oxidations of alloy surface were mainly $In_2O_3$.

  • PDF