• Title/Summary/Keyword: Allocation problem

Search Result 1,030, Processing Time 0.026 seconds

A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem

  • Liang, Yun-Chia;Wu, Chia-Chuan
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.94-101
    • /
    • 2005
  • This paper presents the first known application of a meta-heuristic algorithm, variable neighbourhood descent (VND), to the redundancy allocation problem (RAP). The RAP, a well-known NP-hard problem, has been the subject of much prior work, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. The variable neighbourhood descent method has not yet been used in reliability design, yet it is a method that fits perfectly in those combinatorial problems with potential neighbourhood structures, as in the case of the RAP. A variable neighbourhood descent algorithm for the RAP is developed and tested on a set of well-known benchmark problems from the literature. Results on 33 test problems ranging from less to severely constrained conditions show that the variable neighbourhood descent method provides comparable solution quality at a very moderate computational cost in comparison with the best-known heuristics. Results also indicate that the VND method performs with little variability over random number seeds.

QoE-driven Joint Resource Allocation and User-paring in Virtual MIMO SC-FDMA Systems

  • Hu, YaHui;Ci, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3831-3851
    • /
    • 2015
  • This paper is concerned with the problem of joint resource allocation and user-pairing in virtual MIMO SC-FDMA systems to improve service quality of experience (QoE). No-reference logarithmic model is introduced to quantify service experience for each user and the objective is to maximize sum of all user's mean of score (MOS). We firstly formulate the optimal problem into an S-dimensional (S-D) assignment problem. Then, to solve this problem, the modified Lagrangian relaxation algorithm is deduced to obtain the suboptimal result of joint user-paring and subchannel allocation. The merits of this solution are as follows. First, the gap between its results and the global optimal one can be quantified and controlled by balancing the complexity and accuracy, which merit the other suboptimal algorithms do not have. Secondly, it has the polynomial computational complexity and the worst case complexity is O(3LN3), where L is the maximum iteration time and N is the number of subchannels. Simulations also prove that our proposed algorithm can effectively improve quality of experience and the gap between our proposed and the optimal algorithms can be controlled below 8%.

Saving Tool Cost in Flexible Manufacturing Systems: Joint Optimization of Processing Times and Pallet Allocation (유연생산시스템에서 절삭공구 비용절감을 위한 가공시간과 팔렛배분의 최적화)

  • 김정섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.75-86
    • /
    • 1998
  • We address the problem of determining the optimal processing times and pallet/fixture allocation in Flexible Manufacturing systems in order to minimize tool cost while meeting throughput targets of multiple part types. The problem is formulated as a nonlinear program superimposed on a closed queueing network of the FMSs under consideration. A numerical example reveals the potential of our approach for significant cost saving. We argue that our model can be Integrated Into the process planning system of an FMS to generate efficient process plans quickly.

  • PDF

COMMUNICATION NETWORK DESIGN PROBLEMS USING THE FUZZY SET APPROACH

  • Jin, Chan-yong;Park, Ryun-;Kim, Sam-Soo-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1334-1337
    • /
    • 1993
  • In this study, we newly formulated the link capcity allocation problem and the link capacity allocation and routing problem in an voice/data integrated network by the fuzzy set concept. We developed efficient algorithms for the above fuzzified problems and successfully showed that the fuzzy set theory is the powerful tool for the design problems in communication networks.

  • PDF

Real-time Integrated Timeslot and Code Allocation Scheme for the CDMA/TDD System Supporting Voice and Data Services (음성 및 데이터 서비스를 지원하는 CDMA/TDD 시스템을 위한 실시간 통합 타임슬롯 및 코드 할당 체계)

  • Chang, Kun-Nyeong;Lee, Ki-Dong
    • Korean Management Science Review
    • /
    • v.25 no.2
    • /
    • pp.25-42
    • /
    • 2008
  • CDMA/TOD with asymmetric capacity allocation between uplink and downlink is a highly attractive solution to support the next generation mobile systems. This is because flexible asymmetric allocation of capacity to uplink and downlink usually improves the utilization of the limited bandwidth. In this paper, we mathematically formulate an optimal timeslot and code allocation problem, which is to maximize the total utility considering the numbers of codes(channels) allocated to each data class and the forced terminations of previously allocated codes. We also suggest a real-time integrated timeslot and code allocation scheme using Lagrangean relaxation and subgradient optimization techniques. Experimental results show that the proposed scheme provides high-quality solutions in a fast time.

Bandwidth Allocation and Scheduling Algorithms for Ethernet Passive Optical Networks

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-79
    • /
    • 2010
  • This paper considers bandwidth allocation and scheduling problems on Ethernet Passive Optical Networks (EPON). EPON is one of the good candidates for the optical access network. This paper formulates the bandwidth allocation problem as a nonlinear mathematical one and characterizes the optimal bandwidth allocation which maximizes weighted sum of throughput and fairness. Based upon the characterization, two heuristic algorithms are suggested with various numerical tests. The test results show that our algorithms can be used for efficient bandwidth allocation on the EPON. This paper also shows that the WSPT (Weighted Shortest Processing Time) rule is optimal for minimization the total delay time in transmitting the traffic of the given allocated bandwidth.

Energy-aware Multi-dimensional Resource Allocation Algorithm in Cloud Data Center

  • Nie, Jiawei;Luo, Juan;Yin, Luxiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4320-4333
    • /
    • 2017
  • Energy-efficient virtual resource allocation algorithm has become a hot research topic in cloud computing. However, most of the existing allocation schemes cannot ensure each type of resource be fully utilized. To solve the problem, this paper proposes a virtual machine (VM) allocation algorithm on the basis of multi-dimensional resource, considering the diversity of user's requests. First, we analyze the usage of each dimension resource of physical machines (PMs) and build a D-dimensional resource state model. Second, we introduce an energy-resource state metric (PAR) and then propose an energy-aware multi-dimensional resource allocation algorithm called MRBEA to allocate resources according to the resource state and energy consumption of PMs. Third, we validate the effectiveness of the proposed algorithm by real-world datasets. Experimental results show that MRBEA has a better performance in terms of energy consumption, SLA violations and the number of VM migrations.

Distributed Resource Allocation in Two-Hierarchy Networks

  • Liu, Shuhui;Chang, Yongyu;Wang, Guangde;Yang, Dacheng
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.159-167
    • /
    • 2012
  • In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross-tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non-cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two-hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross-tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.

A Splitter Location-Allocation Problem in Designing FTTH-PON Access Networks (FTTH-PON 가입자망 설계에서 Splitter Location-Allocation 문제)

  • Park, Chan-Woo;Lee, Young-Ho;Han, Jung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.1-14
    • /
    • 2011
  • In this paper, we deal with an access network design problem of fiber-to-the-home passive optical network (FTTH-PON). The FTTH-PON network design problem seeks to minimize the total cost of optical splitters and cables that provide optical connectivity between central office and subscribers. We develop a flow-based mixed integer programming (MIP) model with nonlinear link cost. By developing valid inequalities and preprocessing rules, we enhance the strength of the proposed MIP model in generating tight lower bounds for the problem. We develop an effective Tabu Search (TS) heuristic algorithm that provides good quality feasible solutions to the problem. Computational results demonstrate that the valid inequalities and preprocessing rules are effective for improving the LP-relaxation lower bound and TS algorithm finds good quality solutions within reasonable time bounds.

A modified tabu search for redundancy allocation problem of complex systems of ships

  • Kim, Jae-Hwan;Jang, Kil-Woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.225-232
    • /
    • 2014
  • The traditional RAP (Redundancy Allocation Problem) of complex systems has considered only the redundancy of subsystem with homogeneous components. In this paper we extend it as a RAP of complex systems with heterogeneous components which is more flexible than the case of homogeneous components. We model this problem as a nonlinear integer programming problem, find its optimal solution by tabu search, and suggest an example of the efficient reliability design with heterogeneous components. In order to improve the quality of the solution of the tabu search, we suggest a modified tabu search to employ an adaptive procedure (1-opt or 2-opt exchange) to generate the efficient neighborhood solutions. Computational results show that our modified procedure obtains better solutions as the size of problem increases from 30 to 50, even though it requires rather more computing time. With some adjustment of the parameters of the proposed method, it can be applied to the optimal reliability designs of complex systems of ships.