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Abstract 
 

Energy-efficient virtual resource allocation algorithm has become a hot research topic in cloud 
computing. However, most of the existing allocation schemes cannot ensure each type of 
resource be fully utilized. To solve the problem, this paper proposes a virtual machine (VM) 
allocation algorithm on the basis of multi-dimensional resource, considering the diversity of 
user’s requests. First, we analyze the usage of each dimension resource of physical machines 
(PMs) and build a D-dimensional resource state model. Second, we introduce an 
energy-resource state metric (PAR) and then propose an energy-aware multi-dimensional 
resource allocation algorithm called MRBEA to allocate resources according to the resource 
state and energy consumption of PMs. Third, we validate the effectiveness of the proposed 
algorithm by real-world datasets. Experimental results show that MRBEA has a better 
performance in terms of energy consumption, SLA violations and the number of VM 
migrations. 
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1. Introduction 

Cloud computing is a novel model to provide computing services dynamically, which is 
supported by data centers, through virtual machine (VM) technology to achieve integration of 
resources and applications isolation purposes [1]. As a service-oriented business model, cloud 
providers provide consumers with required computing services by the form of IaaS 
(Infrastructure-as-a-Service), PaaS (Platform-as-a-Service) and SaaS (Software-as-a-Service) 
[2]. Under such a business opportunity, Google, Microsoft, IBM and other large enterprises 
have deployed their own data centers around the world to provide cloud services. 

In order to take full advantage of cloud computing, cloud providers need to ensure the 
ability to flexibly provide services to meet the needs of consumers, while consumers do not 
care about the underlying infrastructure [3]. Virtualization technology is the key technology to 
ensure multiple VMs running simultaneously on the same physical node. With such 
technology, resources in data centers can be allocated with fine-granularity, which not only 
increases the resource utilization significantly, but also improves the quality of service (QoS) 
effectively [4]. 

With the rapid development of cloud computing, the scale of data centers is being enlarged 
continuously, and energy consumption has become a serious problem [5]. A typical data 
center energy consumption is equivalent to 25,000 households [6]. Moreover, a recent study 
[7] showed that the growth of energy consumption in data centers is the fastest in the whole 
ICT industry. With the increasing cost of energy, more and more researchers are focusing on 
how to effectively reduce the energy consumption. A generally accepted method in the data 
center is to consolidate VMs on fewer physical machines (PMs) and make the idle PMs in a 
sleep mode to save energy [8]. However, this method is too centralized to server overload, 
which causes the degradation of QoS and violation of SLA (Service Level Agreement). 
Therefore, an ideal VM allocation policy must find an optimal trade-off between SLA and 
energy consumption [9, 10]. 

 
Fig. 1. Resource waste phenomenon in cloud data center 
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The concept of green cloud computing has aroused great concern in IT industry [11]. Green 
cloud computing aims at not only improving the efficiency of the infrastructure, but also 
reducing energy consumption [10]. It is also crucial to ensure the sustainable development of 
cloud computing. In a cloud data center, user requirements for resource types are various (e.g., 
CPU, memory size, disk size, bandwidth, etc.). However, most of the existing energy-saving 
allocation mechanisms have not taken into account the diversity of requests, lacking of 
research on multi-dimensional resource utilization of physical machines, which causes 
resource waste phenomenon (as shown in Fig. 1) in the data center where one resource is 
exhausted while other resource are wasted. Accordingly, a resource allocation algorithm for 
diversified requirements is extremely needed. 

Therefore, in order to further promote the development of cloud computing, we need to 
consider resource usage of each dimension of PMs and manage resources of the cloud data 
center effectively. Our aim is to maximize resource utilization, and reduce the waste of various 
resources, as well as decreasing the energy consumption of data centers. There is no doubt that 
the development of allocation schemes needs to meet QoS requirements specified in the SLA. 

In this paper, to solve the waste of resource caused by the heterogeneous workloads, we 
consider resource utilization among multiple resource dimensions and propose an 
energy-aware multi-dimensional resource allocation algorithm called MRBEA. Our major 
contributions are as follows. 

1. We build a D-dimensional resource state model and introduce PM distance metrics and 
VM distance metrics for guiding the deployment of VMs. 

2. We propose an efficient VM allocation algorithm MRBEA for maximizing the resource 
utilization and reducing the energy consumption. Through extensive simulation, we show that 
MRBEA superiors other algorithms in terms of energy consumption, the number of VM 
migrations and SLA violations. 

The paper is organized as follows. Section 2 discusses the related work, and the system 
model is introduced in section 3. The detail of allocation algorithm is described in Section 4. 
Performance analysis of algorithms in Section 5. Section 6 summarizes this article and points 
out our future research. 

2. Related Work 
Virtual machine placement (VMP) is similar to the bin packing problem, which is a NP-hard 
problem [12, 13], whereas dynamic resource management is more complex. This section we 
introduce some researches related to resource allocation in current cloud data center. 

Cardosa et al. [14] have proposed an energy-efficient VMP algorithm in heterogeneous 
virtualized data center. However, the proposed algorithm is static and they consider only CPU, 
without supported the stringent SLAs. Considering the multidimensionality of resource, 
Nguyen Trung Hieu et al. [15] designed a Max-BRU algorithm to achieve the maximum of the 
resource utilization by reducing the number of active PMs and balance resource utilization of 
each dimension. The paper did not give a specific performance guarantees, nor the 
corresponding energy consumption model. To ensure high QoS, Xin Li et al. [4] did research 
on how to fully increase the resource utilization for improving the performance of the data 
center and reducing the cost of operating data center. The paper presented a multi-dimensional 
partition model to guide the VMP. The proposed EAGLE algorithm effectively balance 
multi-dimensional resource utilization and reduce the energy consumption of data center. 
However, the dynamics of resource requests is not considered in the paper. LeiWei et al. [16] 
have pointed out that the existing allocation algorithms focus only on homogeneous resources, 
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which leads to “resource starvation” where dominant resources are starved while 
non-dominant resources are wasted. To solve the problem, they proposed a SAMR allocation 
algorithm for heterogeneity to avoid skewed resource utilization in PMs. To ensure 
performance, they developed a Markov chain model to predict the appropriate number of 
active PMs. The paper also introduced new notions of VM offering, which has a practical 
significance. 

VM migration is a key technology in the cloud dynamic resource management system. The 
literature [17] have introduced the VM migration technology and analyzed the importance of it 
in dynamic resource management in detail. There are three problems in VM migration-based 
heuristics: (1) When VM to migrate; (2) Which VM to migrate; (3) Which PM for migration. 
In view of the above questions, Buyya Rajkumar et al. [3] defined a relatively complete green 
energy-saving cloud computing architecture. They proposed an energy-aware VM allocation 
algorithm based on dual-threshold, which not only effectively reduces the energy consumption, 
but also ensures the QoS. Through studying heterogeneity in the workload, Hongyou Li et al. 
[18] proposed two energy-saving algorithms using workload-aware consolidation technology. 
The article have pointed out that the resources required for different applications are different. 
Thus, a computation intensive application can be effectively combined with a memory 
intensive application or a bandwidth intensive application. A good scheduling algorithm needs 
to run on the appropriate VMs included in the same PM, to improve the utilization of resources, 
and thus reduce the energy consumption. Trung Hieu Nguyen et al. [19] proposed a 
multi-resource selection algorithm (MRS), considering the CPU, memory, storage space, 
network bandwidth in the cloud data center. The proposed algorithm improves the utilization 
of the data center and reduces the number of active PMs by consolidating VMs dynamically. 
However, there is no analysis of the system energy model in detail. 

3. System model 
In this section, we introduce cloud data center model, D-dimensional resource state model and 
energy model. 

3.1 Cloud data center model 
We consider a cloud data center with M PMs and denote a set of M activated PMs as 

1 2( , ,..., )MN PM PM PM= . Each PM provides several types of resource such as CPU, memory, 
bandwidth etc. In the cloud data center, there are lots of PMs with different resource capacity, 
and all of them are independent of each other. We define a PM as 1 2( , ,... )d

jPM R R R= , where 
R is capacity of PM, d represents different types of resource and d {1,2,... }D∈ . With 
virtualization technology, multiple VMs can run on a PM simultaneously. Hence, the 
corresponding VM is defined as 1 2( , ,... )d

jVM V V V= . These VMs can be migrated between 
different PMs. 

3.2 D-dimensional resource state model 
In a data center, each PM contains D-dimensional resources. When any one dimensional 

resources run out, it means any new VM cannot be placed on the PM. We construct a 
D-dimensional resource state model to help us to visually grasp the resource usage of PM. 
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Definition 1 ( _ d
jPM RU ) Given a jPM , dRU  is the dth dimensional resource utilization. 

The  _ d
jPM RU  is defined as: 

 

( )__ , 0 ,0_

d
d j used

dj
j total

PM CPM RU j M d DPM C= < ≤ < ≤
                

(1) 

 
This metric represents the resource utilization of dth dimension of jPM  at current time. 

_ d
j usedPM C  is the dth resource capacity which has been used and  _ d

j totalPM C  is the dth 

resource total capacity of jPM . 
In D-dimensional resource state model, each point corresponds to the resource state of a PM, 

namely: 1 2( _ , _ ,..., _ )d
j j j jRU PM RU PM RU PM RU . As shown in Fig. 2, we describe an 

example in detail when D=3. By analogy, we can derive an arbitrary dimensional resource 
state model. Solid points are current resource state of PMs and axes represent the utilization of 
various resources. The point S is saturation point, which means that all resources are used up. 
The point O indicates that the PM is idle. 

 
Fig. 2. D-dimensional resource state model (D=3) 

 
Definition 2 ( .

jPMS Dist ) Given a jPM , the .
jPMS Dist  (as shown in Fig. 2 red line) is defined 

as: 
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The metric .

jPMS Dist  represents the distance from jRU  to the point S, where _ d
j availPM C  is 

the dth available resource of jPM . 

Definition 3 ( .
jPMO Dist ) Given a jPM , the .

jPMO Dist  (as shown in Fig. 2 blue line) is 
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defined as: 

∑
≤<
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The metric .

jPMO Dist  represents the distance from jRU  to the point O. 

3.3 Energy model 
The power consumption of PMs in the data center depends primarily on the CPU, memory, 

disk storage and network interface. The study [20] pointed that energy consumption has a 
nearly linear relationship with CPU utilization. It shows that compared to other system 
resources, CPU occupies most of the power consumpution. Research has shown that the idle 
server consumes approximately 70% of the power consumed by the server at the full load [21]. 
Therefore, the idle servers should be set up sleep mode to save energy. In our study, we adopt 
the energy model as follow: 
 

d+fixed ynamicE P P=                                                     (4) 
 

The energy consumption of a PM consists of a fixed part and dynamic part. fixedP  is 

constant power when the server is working. According to [21], fixedP  accounts for 70% of total 
energy consumption. As shown in Eq.(5), the dynamic consumption mainly from the CPU: 
 

( )dynamic full fixed cpuP P P RU= − ∗                                        (5) 
 
where fullP  is energy consumption of PM at full workload. cpuRU  is the utilization of CPU, its 
calculation is showed in Eq.(1). Because VMs is dynamically changing, so cpuRU  is a function 
of time. The energy consumption of a PM during the time t is shown in Eq.(6): 
 

( )
0

( )
t

fixed full fixed cpuE P t P P RU t dt= ∗ + − ∗ ∫                              (6) 
 

Due to there are a large number of heterogeneous PMs in a data center, so the total energy 
consumption is shown in Eq.(7): 
 

total i
i N

E E
∈

=∑                                                          (7) 

4. Energy-aware multi-dimensional resource allocation algorithm 
With the development of virtualization technology, VMs can be migrated dynamically 
between different PMs according to performance requirements, which brings a great deal of 
help to resource management of the data center. This section we present the energy-aware 
multi-dimensional resource allocation algorithm called MRBEA. 

The MRBEA is illustrated by Algorithm 1. We adopt threshold VM selection scheme. First, 
we set a suitable upper utilization threshold for PMs and keep the utilization of CPU under the 
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threshold. If there exists overloadPM (the the utilization of CPU exceeds the threshold), VM 
returned by SelectVMtoMigrate() (Algorithm 2 in 4.1) will be migrated from this PM and 
placed on a suitable PM by FindSuitablePM() (Algorithm 3 in 4.2). Then, we get the 
“min-PM” with minimum .

jPMO Dist  by FindMinloadPM() and try to migrate away all VMs 
from the PM. If this allocation is successful, the PM is set to sleep mode, otherwise we cancel 
this allocation and keep the PM active. MRBEA is iteratively repeated until there is no 
overloadPM. 
 
Algorithm 1: The MRBEA algorithm 
Input: PMList 
Output: allocatedResult 
1       MigrateList←null 
2       PMtoOff_id←null 
3       for     PM    in     PMList     do 
4             if(overloadPM)      then 
5                      MigrateList←SelectVMtoMigrate(overloadPM) 
6                      FindSuitablePM(MigrateList , PMList) 
7             end if 
8       end for 
9       PMtoOff←FindMinloadPM(PMList) 
10     for     VM    in    PMtoOff    do 
11            MigrateList←VM 
12     end for     
13     FindSuitablePM(MigrateList , PMList) 
14     if there exists overloadPM then 
15            Cancel this Allocation 
16     else 
17            Sleep(PMtoOff) 
18     end if 
19     return   allocatedRuslt 

4.1 VM selection algorithm 

Definition 4 ( VMDist ) Given a 1 2( , ,... )dVM V V V=  , VMDist  is defined as: 
 

 

2

0

d

VM d
d D total

VDist
PM_C< ≤

 
=  

 
∑                                                 (8) 

 
The metric represents the distance from VM to the point O. 

In order to minimize migration costs and prevent SLA violations, we migrate the VM whose 
VMDist  is minimum from the PM to reduce utilization. The pseudo-code for VM selection 

algorithm is presented in Algorithm 2. 

4.2 VM placement algorithm 

Definition 5 (
jPMDist ) Given a jPM  and a VM, 

jPMDist  is defined as: 
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The metric is derived from definition 3, it refers to a new distance between jPM  and the 

point S when the VM is allocated to the jPM . 
Definition 6 ( Power ) This metric presents the power consumption of PM due to a VM 

allocation. The specific energy consumption formula is given in Eq.(4-7). 
In our study, we introduce the metric PAR (Eq.10) to guide VM placement, which combines 

the advantages of the above two metrics, considering the d-dimensional resource utilization 
and energy consumption of the PM. 
 

jPMPAR a Dist b Power= ∗ + ∗                                           (10) 
 
Where a and b are the corresponding weights, and a+b=1. 
 
Algorithm 2: SelectVMtoMigrate(overloadPM) 
Input: overloadPM 
Output: migratedVM 
1       migratedVM←null 
2       minMetric←null 
3       for     VM    in     PM     do 
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5               if     VMDist  <  minMetric    then 

6                      minMetric     ← VMDist  
7                      migratedVM  ← VM 
8               end if 
9        end for  
10      return   migratedVM 
 
Algorithm 3: FindSuitablePM(MigrateList , PMList) 
Input: MigrateList , PMList 
Output: allocatedPM 
1       ComparisonMetric←Max 
2       allocatedPM←null 
3       for     VM    in     MigrateList     do 
4                 for    PM    in     PMList     do 
5                         if      _ d

j availPM C    >      dV    then 

6                                      ∑
≤<
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7                                      a
jPMPAR Dist b Power= ∗ + ∗  

8                                        if   PAR    <   ComparisonMetric       then 
9                                                  ComparisonMetric ←PAR  
10                                                allocatedPM←PM 
11                                     end if 
12                        end if 
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13               end for 
14      end for 
15      return    allocatedPM 

 
The pseudo-code for VM selection algorithm is presented in Algorithm 3. To find a best PM, 

the VM manager traverses the PMList to examine whether there are enough resources for the 
VM. If a PM has enough resources to host the requested VM, the VM manager calculates the 
PAR according to Eq.(10). For the PM without enough resources, the VM manager simply 
skips the calculation and check the next PM. After the checking for all active PMs, the VM 
manager chooses the PM with the least PAR to host the VM. The least PAR indicates the 
optimum in improving utilization of various resources and reducing energy consumption. 

5. Performance evaluation 

5.1 Performance metrics 
We use the following metrics to evaluate the performance of our algorithm. The first metric is 
the total energy consumption of PMs, energy consumption model is introduced in section 3.3. 
The second is the SLA violation rate (SLA violations) [3], which means the frequency of the 
SLA violation during the process of system operation. An SLA violation happens when the 
VM cannot be allocated required MIPS. The third metric is the number of VM migrations. 

5.2 Simulation setup 
We chose CloudSim3.0 [22] as a simulation platform to implement our proposed algorithm 

and evaluated its performance. We have simulated a data center that contains 800 
heterogeneous PMs, respectively, for the HP ProLiant ML110 G4 servers and HP ProLiant 
ML110 G5 servers. The configuration parameter of the servers are shown in Table 1. 

 
Table 1. Types of PMs 

Type CPU（MIPS） Memory（GB） BW（Gbit/s） Energy(W) 
HP ProLiant  
ML110 G4 

     1860×2             4            1 86(idle)  / 
117(full) 

HP ProLiant  
ML110 G5 

     2660×2             4            1 93.7(idle) / 
135(full) 

 
The characteristics of the VM types correspond to Amazon EC2 instance types [23] with the 

only exception that all the VMs are single-core. The VM types are: high-CPU medium 
instance (2500 MIPS, 0.85 GB), extra large instance (2000MIPS, 3.75 GB), small instance 
(1000 MIPS, 1.7 GB), and micro instance (500 MIPS, 613 MB). In our experiments, we chose 
6 datasets (as shown in Table 2) from [24], which were traced from Planetlab [25]. 

 
Table 2. The characteristics of datasets 

Dataset Number of 
VMs 

Mean 
(%) 

St.dev. 
(%) 

Quartile 1 
(%) 

Median 
(%) 

Quartile 3 
(%) 

1 1052 12.31 17.09 2 6 15 
2 898 12.44 16.83 2 5 13 
3 1061 10.70 15.57 2 4 13 
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4 1054 11.54 15.15 2 6 16 

5 1078 10.56 14.14 2 6 14 

6 1463 12.39 16.55 2 6 17 

 

5.3 Simulation results 
Because experiments involves selection of the threshold, so we first verify the effects of 

threshold on energy consumption and SLA. As shown in Fig. 3, the threshold space for: 
( )0.6,1.0α ∈ . 

 
Fig. 3.  Relationship between energy consumption or SLA violations  

and threshold α 
 

The results in Fig. 3 show that with the growth of the threshold, the energy consumption 
reduces gradually, while the rate of SLA violations increases. This also confirms that a higher 
utilization threshold allows more VMs to consolidate on a PM by the cost of sacrificing SLA 
violations. From Fig. 3, we can clearly see that the energy consumption is steadily decreasing, 
while SLA violations rising sharply from α= 0.9. Hence, to balance energy consumption and 
SLA, we select α= 0.9.  

We compare our algorithm with First-Fit - Minimum Migration Time (FFT-MMT) 
algorithm and Power Aware BFD (PABFD)-MMT algorithm which is introduced by 
Beloglazov et al. [24] in next experiments. These two algorithms focus on virtual resource 
allocation. FFT-MMT utilizes MMT policy to choose a VM to migrate and adopts the idea of 
FFT to find a destination PM. By this method, MMT migrates a VM that requires the 
minimum time to complete a migration [24], that is to say, it selects the VM with minimum 
memory to migrate. Then a VM is allocated to a PM by FFT which is scanned firstly and meet 
resource requirement. PABFD-MMT algorithm adopts MMT during the VM migration 
process. Considering energy consumption of PMs, the VM would be allocated to the PM that 
consumes the least energy caused by the allocation. 
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Fig. 4 shows the total energy consumption of PMs in data center. We can see the energy 

consumption of FFT is maximum, this is because FFT just simply judge whether there are 
enough resources for VMs in PMs, without considering energy efficiency. Compared to the 
other two algorithms, the proposed algorithm has less energy consumption. This also indicate 
that during the allocation of resources, considering only energy consumption of a single PM 
cannot make the minimum energy consumption of the entire data center. We needs combine 
the multi-dimensional resource usage and energy consumption to choose the most suitable 
VM allocation mechanism. 
 

     
Fig. 4.  The energy consumption                                      Fig. 5.  The SLA violations 

 
 

Fig. 4 shows the total energy consumption of PMs in data center. We can see the energy 
consumption of FFT is maximum, this is because FFT just simply judge whether there are 
enough resources for VMs in PMs, without considering energy efficiency. Compared to the 
other two algorithms, the proposed algorithm has less energy consumption. This also indicate 
that during the allocation of resources, considering only energy consumption of a single PM 
cannot make the minimum energy consumption of the entire data center. We needs combine 
the multi-dimensional resource usage and energy consumption to choose the most suitable 
VM allocation mechanism. 

In Fig. 5, we can clearly see that the adoption of the MRBEA algorithm results in a 
significantly decreased SLA violations in comparison to other algorithms. The MRBEA has 
reduced the energy consumption, while balancing the resource utilization across all PMs and 
improving SLA violations. The less SLA violations for the cloud providers can reap greater 
benefits, but also provides users with a higher level of performance guarantees. 
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Fig. 6.  The number of VM migrations 

 
The results in Fig. 6 show that our proposed MRBEA algorithm completes the cloud task 

with less number of migrations. As we known, frequent VM migrations may led to 
performance degradation, and the more migrations, there will be an increase in violation of 
SLA. The MRBEA algorithm improves the efficiency of resource allocation by considering 
each dimension of resource utilization and heterogeneous workload, thereby reducing the 
unnecessary migrations. 

6. Conclusion 
In the article, we addressed the phenomenon of resources waste in data center for improving 
the resource utilization among multiple dimensions. Based on D-dimensional resources state 
and energy consumption model, we propose an energy-aware multi-dimensional resource 
allocation algorithm called MRBEA. The proposed algorithm efficiently reduces energy 
consumption and achieves a better performance. The simulation results have shown that the 
MRBEA superiors other algorithms in terms of energy consumption, the number of VM 
migrations and SLA violations. As a future work, we seek to implement and evaluate our 
algorithm in a real-world experiment (e.g. Openstack). 
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