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Abstract. This paper presents the first known application of a meta-heuristic algorithm, variable neighbour-
hood descent (VND), to the redundancy allocation problem (RAP). The RAP, a well-known NP-hard 
problem, has been the subject of much prior work, generally in a restricted form where each subsystem 
must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a 
practical way to solve large instances of the relaxed RAP where different components can be used in parallel.   
The variable neighbourhood descent method has not yet been used in reliability design, yet it is a method 
that fits perfectly in those combinatorial problems with potential neighbourhood structures, as in the case  
of the RAP. A variable neighbourhood descent algorithm for the RAP is developed and tested on a set 
of well-known benchmark problems from the literature. Results on 33 test problems ranging from less to  
severely constrained conditions show that the variable neighbourhood descent method provides comparable 
solution quality at a very moderate computational cost in comparison with the best-known heuristics. Re-
sults also indicate that the VND method performs with little variability over random number seeds. 
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1.  INTRODUCTION 

The most studied configuration of the redundancy 
allocation problem (RAP) is a series system of s inde-
pendent k-out-of-n: G subsystems. Because of the need 
for reliability and increased security requirements, a 
series-parallel system has been widely used. The RAP is 
NP-hard (Chern 1992) and has been studied in many 
forms as summarized in Tillman et al., (1977a), and by 
Kuo and Prasad (2000).  

As shown in Figure 1, a k-out-of-n: G subsystem i is 
functioning properly if at least ki of its ni components are 
operational. In the formulation of a series-parallel system 
problem, for each subsystem, multiple component choices 
are used in parallel, and each subsystem may have dif-
ferent component selections. Thus, the RAP can be for-
mulated to select the optimal combination of components 
and redundancy levels to meet system level constraints, 
cost of C and weight of W while maximizing system 
reliability. It is assumed that system weight and system 
cost are represented by linear combinations of component 
weight and cost.  
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In addition, if the maximum number of components 
allowed in parallel is pre-determined, the following con-
straint is added: 
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Figure 1. Series-parallel system configuration 
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1.1  Notations and Assumptions 

k minimum number of components required 
to function as a pure parallel system  

n total number of components used in a pure 
parallel system 

k-out-of-n: G a system that functions when at least k of 
its n components function 

R overall reliability of the series-parallel 
system 

C system cost constraint 
W system weight constraint 
S number of subsystems  
i index for subsystem, i = 1,…, s 
j index for components in a subsystem 
ai number of available component choices for 

subsystem i 
rij reliability of component j available for 

subsystem i 
cij cost of component j available for subsys-

tem i 
wij weight of component j available for sub-

system i 
yij quantity of component j used in subsystem i 

iy   1( , ..., )i iai
y y  

ni =
1

,
ai

ij
j

y
=

∑ total number of components used 

in subsystem i 
nmax maximum number of components that can 

be in parallel (user assigned) 
ki minimum number of components in paral-

lel required for subsystem i to function 
( | )i i iR y k  reliability of subsystem i, given ik  
( )i iC y  total cost of subsystem i 
( )i iW y  total weight of subsystem i 

Ru un-penalized system reliability of solution u 
Rup penalized system reliability of solution u 
Cu total system cost of solution u 
Wu total system weight of solution u 

Cγ  amplification parameter of cost constraint 
in the penalty function 

Wγ  amplification parameter of weight constra-
int in the penalty function 

lmax number of neighbourhood structures 
l index for neighbourhood structures 
Nl the lth neighbourhood structure in the sear-

ch sequence 
y current solution 
y´ the best neighbouring solution of y in a 

neighbourhood structure 
e constant that controls the lower bound of 

number of components used in parallel 
f constant that controls the upper bound of 

number of components used in parallel 

 
Typical assumptions are considered as follows: 
● The state of the components and the system either 

function or fail.  
● Failed components do not damage the system, and are 

not repaired. 
● The failure of a component does not lead to other 

components failing.  
● Components are active redundant, i.e., the failure rates 

of components when not in use are the same as when in 
use. 

● Component reliability, weight and cost are known and 
deterministic. 

● The supply of components is unlimited. 

1.2 Literature Review 

Exact methods of the RAP include dynamic pro-
grammming (Bellman and Dreyfus 1958, Fyffe et al. 
1968, Nakagawa and Miyazaki 1981, Li 1996), integer 
programming (Ghare and Taylor 1969, Bulfin and Liu 
1985, Misra and Sharma 1991, Coit and Liu 2000), and 
mixed-integer and nonlinear programming (Tillman et al. 
1977b). Since exact methods in practice are limited to the 
increase in problem size, meta-heuristics have become a 
popular alternative to exact methods. Meta-heuristic ap-
proaches to the RAP vary among Genetic Algorithm (GA) 
(Coit and Smith 1996a&b, Levitin et al. 1998), Tabu 
Search (TS) (Huang et al. 2002, Kulturel-Konak et al. 
2003), Ant Colony Optimization (ACO) (Liang and Smith 
1999, Huang et al. 2002, Liang 2001, Liang and Smith 
2004), hybrid Neural Network (NN) and GA (Coit and 
Smith 1996c), and hybrid ACO with TS (Huang 2003). In 
particular, Levitin et al. (1998) generalize a redundancy 
allocation problem to multi-state systems, where the 
system and its components have a range of performance 
levels-from perfectly functioning to complete failure. Le-
vitin’s paper implements a universal moment genera-ting 
function to estimate system performance (capacity or 
operation time), and a GA is employed as the optimiza-
tion technique. Furthermore, considering the problem type 
for maximizing system reliability, past studies such as TS 
proposed by Kulturel-Konak et al. (2003), GA de-veloped 
by Coit and Smith (1996a), and ACO by Liang and Smith 
(2001, 2004) have provided comparable results over a set 
of 14-subsystem benchmark problems. Huang et al. (2002, 
2003) proposed ACO, TS, and hybrid ACO/TS algori-
thms respectively to solve the system cost minimization 
RAP. 

Our study considers one of the latest meta-heuristics, 
Variable Neighbourhood Descent (VND), to solve the 
system reliability maximization RAP. A variation of the 
variable neighbourhood search (VNS) method was intro-
duced first by Mladenović (1995). The VND method ex-
plores search space based on the systematic change of 
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neighbourhoods within the process and has been succe-
ssfully applied to diverse combinatorial optimisation pro-
blems, e.g. multi-source problem (Brimberg et al. 2000), 
single machine scheduling (Besten and Stützle 2001), arc 
routing problem (Hertz and Mittaz 2001), clustering 
(Hansen and Mladenović 2002), minimum spanning tree 
problem (Ribeiro and Souza 2002), and phylogeny pro-
blem (Ribeiro and Vianna 2005). Because of the proper 
neighbourhood structure of the RAP and lack of dominant 
solution techniques, it is a good candidate for other meta-
heuristic approaches including the focus of this paper, 
VND.  

This paper is organized as follows. Section 2 in-
troduces the variable neighbourhood descent algorithm 
for RAP, and section 3 provides our discussion on com-
putational results. Finally, section 4 contains concluding 
remarks and suggestions for future research. 

2.  VARIABLE NEIGHBOURHOOD 
DESCENT ALGORITHM 

Hansen and Mladenović (2003) provide a detailed 
summary of the state-of-the-art development of VNS and 
its variations. They describe VNS-type algorithms as me-
ta-heuristics, and employ a set of neighbourhood search 
methods to find the local optimum in each neighbourhood 
iteratively and hopefully to reach the global optimum at 
the end. If the change of neighbour-hoods is performed in 
a deterministic way, such a method is called VND. The 
VND algorithm for RAP (denoted as VND_RAP) is dis-
cussed below.  

At the initialization step, a set of neighbourhood 
structures ( max;  1, ...,lN l l= ) and the sequence of their 
implementation are determined. Then a feasible initial 
solution is generated and set as the current solution (y). In 
the main search loop, starting from the first neighbour-
hood, i.e., N1, a complete neighbourhood search is 
performed. If the best neighbouring solution (y') in this 
neighbourhood is better than the current solution (y), y is 
replaced by y' and l is reset to 1, i.e., start from the first 
neighbourhood again with the updated y. Otherwise, start 
the consecutive neighbourhood search with y. The process 
continues until all neighbourhoods are visited and no 
further improvement can be obtained to the current solu-
tion. The VND_RAP procedure can be formalized in the 
following flow chart: 

 Three key factors underlie the proposed VND_RAP 
algorithm - how to generate a proper initial solution, how 
to define a set of neighbourhood structures, and how to 
design a penalty function to evaluate infeasible solutions 
are discussed in the following sections. 

2.1  Initial Solution Generation 

To generate a feasible initial solution, s integers 

between ki + e and nmax - f (inclusive) are randomly 
selected to represent the number of components in 
parallel (ni) for each subsystem. e and f denote the 
constants that control the range of component selection. 
Then, the ni components are chosen under a uniform 
distribution to the ai different types. Where a feasible 
solution is calculated, the initial solution is found; 
otherwise, the process is repeated until a feasible initial 
solution is obtained. 
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St ar t

St op
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l = 1
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Generate a feasible initial solution 
(y)

)(yNy l∈′

Figure 2. Flow chart of VND_RAP algorithm 

2.2  Neighbourhood Structure 

This section depicts four kinds of neighbourhood 
structures and illustrates with an example, respectively: 

Type 1 structure: This structure considers changes on 
only one subsystem. Simultaneously replace one type of 
component with a different type within the same 
subsystem, i.e., yij → yij + 1 and yim → yim - 1 for j ≠ m. 
All possibilities are enumerated and all subsystems are 
considered. For example, if there are three available 
components (I, II, and III) in a subsystem, and the current 



 A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem 97 

 

component allocation is as in Figure 3(a). Figures 3(b) to 
3(e) show four combinations of neighbouring solutions 
generated accordingly and the shaded components are 
newly added to replace the existing ones.  
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Figure 3. An example of neighbourhood type 1 

Type 2 structure: They are the same as in a Type 1 
structure and changes the number of a particular com-
ponent type by either adding or subtracting one, i.e., yij → 
yij + 1 or yij → yij - 1. Each component available in a 
subsystem is independently considered. For example, 
there are three component types (I, II, and III) available in 
a particular subsystem and Figure 4(a) represents the 
current allocation with one Type I component and two 
Type II components. Then, a total of five possible com-
binations of neighbouring solutions are derived as Figures 
4(b) to 4(f), where shaded boxes represent the added 
components, and the removed components are marked by 
the dashed box.  
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Figure 4. An example of neighbourhood type 2 

Type 3 structure: This structure considers changes on 
two subsystems at a time. Hence, simultaneously add one 
component to a certain subsystem and delete one com-
ponent in another subsystem, i.e., yij → yij + 1 and yom → 
yom - 1 for i ≠ o. All possibilities are enumerated and all 
subsystems are considered. For instance, the current 
allocation is demonstrated in Figure 5(a). One possible 
neighbouring solution is to add one Component III in 
subsystem 1 and delete Component I from subsystem i; 
the result is in Figure 5(b) where the shaded box is the 
added component without replacing any existing one, and 
the dashed box is the eliminated one. 
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Figure 5. An example of neighbourhood type 3 

Type 4 structure: They are the same as in a Type 3 
structure. This neighbourhood extends the Type 1 neigh-
bourhood above to exchange components in two of many 
subsystems simultaneously, i.e., (yij → yij + 1 and yim → 
yim - 1)  (∪ yoj → yoj + 1 and yom → yom - 1) for j ≠ m and i 
≠ o. An example shown in Figure 6 assumes three 
component options (denoted by I, II, and III) available in 
each subsystem. The example of Figure 6(a) shows the 
current status. In subsystem 1, a Component II replaces 
one of Component Is. Also, in subsystem i a Component 
III substitutes one of Component IIs. Figure 6(b) shows 
the result of these two subsystems where the new com-
ponents are shaded.  
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Figure 6. An example of neighbourhood type 4 

2.3  Penalty Function 

Coit and Smith (1996b) suggest the use of a penalty 
function to evaluate the objective function under a con-
strained problem. An appropriate-designed penalty func-
tion will encourage the algorithm to explore the feasible 
region and infeasible region near the border of the 
feasible area, and discourage, but permit, further search 
into the infeasible region. After generating all neigh-
bouring solutions, the algorithm uses a penalty function 
for infeasible solutions (Liang and Smith 2004):  

C W

up u
u u

C W
R R

C W

γ γ

= × ×
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (5) 

where Cu and Wu are total system cost and weight of 
solution u respectively. Ru is the unpenalized reliability of 
solution u calculated using equation (1). Then, the 
penalized reliability Rup for systems that exceed cost 
constraint C and/or weight constraint W is calculated by 
multiplying the un-penalized objective with two penalty 

factors ( ) C

u

C
C

γ

 and ( ) W

u

W
W

γ

 where the exponents 

Cγ  and Wγ  are preset amplification parameters.  

3.  COMPUTATIONAL RESULTS 

The VND_RAP is coded in Borland C++ Builder 5.0 
and run with an Intel Pentium IV 2.8GHz PC at 512 MB 
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RAM. All computations use real float point precision 
without rounding or truncating values. The system 
reliability of the final solution is rounded to four digits 
behind the decimal point in order to compare them with 
results in the literature.  

The 33 variations of the Fyffe et al. problem (1968) 
as devised by Nakagawa & Miyazaki (1981) were used to 
test the performance of VND_RAP. The component 
options for the benchmark problems are listed in Table 1. 
This problem sets C = 130 and W incrementally de-
creased from 191 to 159. In Fyffe et al. (1968) and Naka-
gawa & Miyazaki (1981), the optimization approaches 
require only identical components to be placed in re-
dundancy; however, for the VND_RAP approach, differ-
ent types are allowed to reside in parallel (assuming that 
values of nmax = 8 and ki = 1 for all subsystems). The 
parameters of the penalty function are set as 1cγ =  
and 2Wγ = . Ten runs were made using different random 
number seeds for each problem instance. 

The following two settings play key roles in the 
VND_RAP algorithm: the number of initial components 
in each subsystem and the sequence of the neighbourhood 
structures. Therefore, details of these two factors are 
investigated in sections 3.1 and 3.2. In addition, con-
sidering prior RAP work where component mixing was 
allowed on the heuristic benchmarks, the study chose GA 
of Coit and Smith (1996a), TS of Kulturel-Konak et al. 
(2003), and ACO of Liang and Smith (2004) for com-
parison and will be discussed in section 3.3.  

3.1  Number of Initial Components 

The generation of an initial solution is controlled by 
a range between ki + e and nmax - f (inclusive) determining 
the number of components in parallel in each subsystem. 
In order to obtain a feasible initial solution close to the 
border between the feasible region and the infeasible 

region, an investigation is conducted. The algorithm con-
siders both (e = 1, f = 4) and (e = 1, f = 5); in other words, 
2 to 4 components and 2 to 3 components are selected for 
each subsystem. Figure 7 indicates the maximum reli-
ability over ten runs in 33 instances. Under the least (W = 
191~181) and moderate (W = 180~170) constrained 
problems, the option of 2~4 components performs equal 
or better than that of 2~3 components in 14 out of 22 
instances. When the weight constraint becomes stricter 
(W = 169~159), the option of 2~3 components outper-
forms the 2~4 components one in 7 out of 11 instances. 
Then, with the decrease of the W value, Table 2 shows the 
computational expense of the 2~4 components option 
grows tremendously. For the most constrained 11 instan-
ces, the average CPU time increases to approximately 96 
seconds. However, the 2~3 components option performs 
with much less computationally effort. Our results also 
show whether the constraints are loose or strict, the 
average CPU time always appears lower than 1 second. 
To balance solution quality and computational expense, 
the 2~4 components option is adopted for the least and 
moderate constrained instances, i.e., W = 191~170, and 
remaining instances use the 2~3 components option.  
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Table 1. Component data for test problems (Fyffe et al., 1968) 
Component Alternatives (j) 

1 2 3 4 Sub-system 
(i) 

ri1 ci1 wi1 ri2 ci2 wi2 ri3 ci3 wi3 ri4 ci4 wi4

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5 
2 0.95 2 8 0.94 1 10 0.93 1 9 n/a n/a n/a 
3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4 
4 0.83 3 5 0.87 4 6 0.85 5 4 n/a n/a n/a 
5 0.94 2 4 0.93 2 3 0.95 3 5 n/a n/a n/a 
6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4 
7 0.91 4 7 0.92 4 8 0.94 5 9 n/a n/a n/a 
8 0.81 3 4 0.90 5 7 0.91 6 6 n/a n/a n/a 
9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8 
10 0.83 4 6 0.85 4 5 0.90 5 6 n/a n/a n/a 
11 0.94 3 5 0.95 4 6 0.96 5 6 n/a n/a n/a 
12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7 
13 0.98 2 5 0.99 3 5 0.97 2 6 n/a n/a n/a 
14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9 
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Table 2. The effect of number of initial components on 

average CPU time (in seconds) 

 191~181 180~170 169~159 
2~4 0.339 1.443 95.912 
2~3 0.291 0.266 0.582 

3.2 The Sequence of Neighbourhood Structures 

Hansen and Mladenović (2003) indicate that the key 
to successfully employing the VND consists of the proper 
definition of neighbourhood structures, and the sequence 
of neighbourhood structures, etc. Four types of neigh-
bourhood structures are proposed in section 2.2, so the 
number of possible search sequences is 4! = 24. Figure 8 
shows the average system reliability over 10 runs in each 
possible sequence of neighbourhood structures. The 
instances are divided into three groups – 191~181, 
180~170, and 169~159 depending on the severity of the 
weight constraint. The sequence of 2-3-1-4 outperforms 
other sequences in all three groups of instances. In 
addition, when starting with a Type 2 neighbourhood, the 
average performance is better than starting with other 
structures.  

Table 3 summarizes the average performance (deno-
ted by Ravg), the best performance (denoted by Rmax), and 
theaverage standard deviation (denoted by Stdev) over 10 
runs in all 33 instances for each possible se-quence. It 
again confirms that the sequence of Type 2-Type 3-Type 
1-Type 4 performs the best in all measures. That is this 
sequence not only provides the best solution quality but 
also is the most robust to the random number seed. 
Therefore, in next section, this sequence is used to 
compare other best-known heuristics in the literature. 
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Figure 8. The effect of sequence of neighbourhood 

structures on average system reliability 

3.3  Comparison with Other Metaheuristics 

Considering prior RAP works where component 
mixing was allowed on the heuristic benchmarks, the 
three best-known metaheuristics - GA of Coit and Smith 
(1996a), TS of Kulturel-Konak et al. (2003), and ACO of 
Liang and Smith (2004) were chosen for comparison. 
Each algorithm was run 10 times using different random 
number seeds for each instance. Percentages of the 
deviation between VND_RAP and other meta-heuristics, 
GA, ACO, and TS are displayed in Figure 9. The 
performance measure is defined as ((other methods – 
VND_RAP) / VND_RAP) × 100%. The best solution 
over 10 runs was used for comparison. The deviations for 
the less and moderate constrained instances (the first 22) 
scatter between 0.15% and 0.35%, and when the 
problems become more constrained (the last 11), the 
deviations fluctuate between 0.45% and 0.01%. The 

Table 3. The effect of sequence of neighbourhood structures on avgR , maxR , and Stdev 

Sequence avgR  maxR  Stdev Sequence avgR  maxR  Stdev 

1-2-3-4 0.9610 0.9669 0.0045 3-1-2-4 0.9594 0.9657 0.0042 
1-2-4-3 0.9590 0.9652 0.0046 3-1-4-2 0.9614 0.9668 0.0037 
1-3-2-4 0.9595 0.9654 0.0041 3-2-1-4 0.9647 0.9698 0.0044 
1-3-4-2 0.9609 0.9665 0.0039 3-2-4-1 0.9640 0.9694 0.0044 
1-4-2-3 0.9579 0.9649 0.0050 3-4-1-2 0.9613 0.9664 0.0037 
1-4-3-2 0.9595 0.9656 0.0039 3-4-2-1 0.9613 0.9663 0.0037 
2-1-3-4 0.9654 0.9701 0.0038 4-1-2-3 0.9578 0.9648 0.0049 
2-1-4-3 0.9634 0.9695 0.0043 4-1-3-2 0.9594 0.9656 0.0039 
2-3-1-4 0.9672 0.9712 0.0030 4-2-1-3 0.9578 0.9648 0.0049 
2-3-4-1 0.9661 0.9702 0.0031 4-2-3-1 0.9578 0.9648 0.0049 
2-4-1-3 0.9627 0.9687 0.0040 4-3-1-2 0.9594 0.9656 0.0039 
2-4-3-1 0.9628 0.9688 0.0040 4-3-2-1 0.9594 0.9656 0.0039 
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average percentage of the deviation VND_RAP over all 
33 instances was less than 0.3% compared with other 
three methods. In addition, the average standard deviation 
of VND_RAP over 330 runs (33 instances with 10 runs 
each) was 0.003. Thus, VND_RAP was able to find 
comparable solutions to the best-known methods in the 
literature and was robust to random number seeds. 
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Figure 9. Comparisons of VND_RAP versus GA, ACO, 

and TS 

It is difficult to make a precise comparison on com-
putational expense. CPU seconds vary according to hard-
ware, software and programmer’s coding skill. Therefore, 
the number of solutions generated may provide a better 
idea on how efficient an algorithm performs. The number 
of solutions generated in GA (Coit and Smith 1996b) was 
48,040 (a population size of 40 and stopped after 1200 
iterations), the ACO algorithm in Liang and Smith (2004) 
needed about 100,000 evaluations (a colony size of 100 
with up to 1000 iterations), and TS in Kulturel-Konak et 
al. (2003) evaluated an average of 350,000 solutions. The 
number of solutions searched in VND_RAP was appro-
ximately 49,000 on average. That is, VND_RAP required 
only a similar number of evaluations to GA, less than half 
of the ones in ACO, and 1/7 of TS to get the comparable 
performance. In addition, the average CPU time of 
VND_RAP was 0.73 seconds that was considered as a 
reasonable time in solving such a large system.  

4.  CONCLUSIONS 

This paper uses a variable neighbourhood descent 
meta-heuristic method to solve the series-parallel redun-
dancy allocation problem. The RAP is a well-known NP-
hard problem generally in a restricted form where each 
subsystem must consist of identical components in paral-
lel to make computations tractable. The newer meta-
heuristic methods overcome this limitation and offer a 
practical way to solve large instances of the relaxed RAP 
where different components can be placed in parallel. 
Given the well-structured neighbourhood of the RAP, 

variable neighbourhood descent method that has not been 
used in reliability design yet is likely to be more effective 
and more efficient than one that does not. A VND_RAP 
algorithm is proposed and tested on the most well known 
benchmark problems from the literature. It has been 
shown that VND_RAP performs comparably well to 
other meta-heuristics in solution quality and very ef-
ficiently in computational expense consideration. There-
fore, VND and its variations seem very promising for 
other NP-hard reliability design problems such as those 
found in networks and complex structures. 
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