
IEMS Vol. 4, No. 1, pp. 94-101, June 2005.

A Variable Neighbourhood Descent Algorithm for
the Redundancy Allocation Problem

Yun-Chia Liang†·Chia-Chuan Wu

Department of Industrial Engineering and Management, Yuan Ze University
No 135 Yuan-Tung Road, Chung-Li, Taoyuan County, Taiwan 320, R.O.C.

Tel: +886-3-4638800 ext. 2521, E-mail: ycliang@saturn.yzu.edu.tw

Abstract. This paper presents the first known application of a meta-heuristic algorithm, variable neighbour-
hood descent (VND), to the redundancy allocation problem (RAP). The RAP, a well-known NP-hard
problem, has been the subject of much prior work, generally in a restricted form where each subsystem
must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a
practical way to solve large instances of the relaxed RAP where different components can be used in parallel.
The variable neighbourhood descent method has not yet been used in reliability design, yet it is a method
that fits perfectly in those combinatorial problems with potential neighbourhood structures, as in the case
of the RAP. A variable neighbourhood descent algorithm for the RAP is developed and tested on a set
of well-known benchmark problems from the literature. Results on 33 test problems ranging from less to
severely constrained conditions show that the variable neighbourhood descent method provides comparable
solution quality at a very moderate computational cost in comparison with the best-known heuristics. Re-
sults also indicate that the VND method performs with little variability over random number seeds.

Keywords: variable neighbourhood descent, redundancy allocation problem, series-parallel system, combinatorial

optimisation

1. INTRODUCTION

The most studied configuration of the redundancy
allocation problem (RAP) is a series system of s inde-
pendent k-out-of-n: G subsystems. Because of the need
for reliability and increased security requirements, a
series-parallel system has been widely used. The RAP is
NP-hard (Chern 1992) and has been studied in many
forms as summarized in Tillman et al., (1977a), and by
Kuo and Prasad (2000).

As shown in Figure 1, a k-out-of-n: G subsystem i is
functioning properly if at least ki of its ni components are
operational. In the formulation of a series-parallel system
problem, for each subsystem, multiple component choices
are used in parallel, and each subsystem may have dif-
ferent component selections. Thus, the RAP can be for-
mulated to select the optimal combination of components
and redundancy levels to meet system level constraints,
cost of C and weight of W while maximizing system
reliability. It is assumed that system weight and system
cost are represented by linear combinations of component
weight and cost.

Max
1

(|)
s

i i i
i

R R k
=

= Π y (1)

Subject to

1

() ,
s

i i
i

C C
=

≤∑ y (2)

1

() ,
s

i i
i

W W
=

≤∑ y (3)

In addition, if the maximum number of components
allowed in parallel is pre-determined, the following con-
straint is added:

∑ ≤≤
=

ia

j
iji nyk

1
max

 .,...,2 ,1 si =∀ (4)

1

2

n1

1

2

n2

1

2

ns

1=i 2=i si =

Figure 1. Series-parallel system configuration

† : Corresponding Author

 A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem 95

1.1 Notations and Assumptions

k minimum number of components required
to function as a pure parallel system

n total number of components used in a pure
parallel system

k-out-of-n: G a system that functions when at least k of
its n components function

R overall reliability of the series-parallel
system

C system cost constraint
W system weight constraint
S number of subsystems
i index for subsystem, i = 1,…, s
j index for components in a subsystem
ai number of available component choices for

subsystem i
rij reliability of component j available for

subsystem i
cij cost of component j available for subsys-

tem i
wij weight of component j available for sub-

system i
yij quantity of component j used in subsystem i

iy 1(, ...,)i iai
y y

ni =
1

,
ai

ij
j

y
=

∑ total number of components used

in subsystem i
nmax maximum number of components that can

be in parallel (user assigned)
ki minimum number of components in paral-

lel required for subsystem i to function
(|)i i iR y k reliability of subsystem i, given ik
()i iC y total cost of subsystem i
()i iW y total weight of subsystem i

Ru un-penalized system reliability of solution u
Rup penalized system reliability of solution u
Cu total system cost of solution u
Wu total system weight of solution u

Cγ amplification parameter of cost constraint
in the penalty function

Wγ amplification parameter of weight constra-
int in the penalty function

lmax number of neighbourhood structures
l index for neighbourhood structures
Nl the lth neighbourhood structure in the sear-

ch sequence
y current solution
y´ the best neighbouring solution of y in a

neighbourhood structure
e constant that controls the lower bound of

number of components used in parallel
f constant that controls the upper bound of

number of components used in parallel

Typical assumptions are considered as follows:
● The state of the components and the system either

function or fail.
● Failed components do not damage the system, and are

not repaired.
● The failure of a component does not lead to other

components failing.
● Components are active redundant, i.e., the failure rates

of components when not in use are the same as when in
use.

● Component reliability, weight and cost are known and
deterministic.

● The supply of components is unlimited.

1.2 Literature Review

Exact methods of the RAP include dynamic pro-
grammming (Bellman and Dreyfus 1958, Fyffe et al.
1968, Nakagawa and Miyazaki 1981, Li 1996), integer
programming (Ghare and Taylor 1969, Bulfin and Liu
1985, Misra and Sharma 1991, Coit and Liu 2000), and
mixed-integer and nonlinear programming (Tillman et al.
1977b). Since exact methods in practice are limited to the
increase in problem size, meta-heuristics have become a
popular alternative to exact methods. Meta-heuristic ap-
proaches to the RAP vary among Genetic Algorithm (GA)
(Coit and Smith 1996a&b, Levitin et al. 1998), Tabu
Search (TS) (Huang et al. 2002, Kulturel-Konak et al.
2003), Ant Colony Optimization (ACO) (Liang and Smith
1999, Huang et al. 2002, Liang 2001, Liang and Smith
2004), hybrid Neural Network (NN) and GA (Coit and
Smith 1996c), and hybrid ACO with TS (Huang 2003). In
particular, Levitin et al. (1998) generalize a redundancy
allocation problem to multi-state systems, where the
system and its components have a range of performance
levels-from perfectly functioning to complete failure. Le-
vitin’s paper implements a universal moment genera-ting
function to estimate system performance (capacity or
operation time), and a GA is employed as the optimiza-
tion technique. Furthermore, considering the problem type
for maximizing system reliability, past studies such as TS
proposed by Kulturel-Konak et al. (2003), GA de-veloped
by Coit and Smith (1996a), and ACO by Liang and Smith
(2001, 2004) have provided comparable results over a set
of 14-subsystem benchmark problems. Huang et al. (2002,
2003) proposed ACO, TS, and hybrid ACO/TS algori-
thms respectively to solve the system cost minimization
RAP.

Our study considers one of the latest meta-heuristics,
Variable Neighbourhood Descent (VND), to solve the
system reliability maximization RAP. A variation of the
variable neighbourhood search (VNS) method was intro-
duced first by Mladenović (1995). The VND method ex-
plores search space based on the systematic change of

96 Yun-Chia Liang·Chia-Chuan Wu

neighbourhoods within the process and has been succe-
ssfully applied to diverse combinatorial optimisation pro-
blems, e.g. multi-source problem (Brimberg et al. 2000),
single machine scheduling (Besten and Stützle 2001), arc
routing problem (Hertz and Mittaz 2001), clustering
(Hansen and Mladenović 2002), minimum spanning tree
problem (Ribeiro and Souza 2002), and phylogeny pro-
blem (Ribeiro and Vianna 2005). Because of the proper
neighbourhood structure of the RAP and lack of dominant
solution techniques, it is a good candidate for other meta-
heuristic approaches including the focus of this paper,
VND.

This paper is organized as follows. Section 2 in-
troduces the variable neighbourhood descent algorithm
for RAP, and section 3 provides our discussion on com-
putational results. Finally, section 4 contains concluding
remarks and suggestions for future research.

2. VARIABLE NEIGHBOURHOOD
DESCENT ALGORITHM

Hansen and Mladenović (2003) provide a detailed
summary of the state-of-the-art development of VNS and
its variations. They describe VNS-type algorithms as me-
ta-heuristics, and employ a set of neighbourhood search
methods to find the local optimum in each neighbourhood
iteratively and hopefully to reach the global optimum at
the end. If the change of neighbour-hoods is performed in
a deterministic way, such a method is called VND. The
VND algorithm for RAP (denoted as VND_RAP) is dis-
cussed below.

At the initialization step, a set of neighbourhood
structures (max; 1, ...,lN l l=) and the sequence of their
implementation are determined. Then a feasible initial
solution is generated and set as the current solution (y). In
the main search loop, starting from the first neighbour-
hood, i.e., N1, a complete neighbourhood search is
performed. If the best neighbouring solution (y') in this
neighbourhood is better than the current solution (y), y is
replaced by y' and l is reset to 1, i.e., start from the first
neighbourhood again with the updated y. Otherwise, start
the consecutive neighbourhood search with y. The process
continues until all neighbourhoods are visited and no
further improvement can be obtained to the current solu-
tion. The VND_RAP procedure can be formalized in the
following flow chart:

 Three key factors underlie the proposed VND_RAP
algorithm - how to generate a proper initial solution, how
to define a set of neighbourhood structures, and how to
design a penalty function to evaluate infeasible solutions
are discussed in the following sections.

2.1 Initial Solution Generation

To generate a feasible initial solution, s integers

between ki + e and nmax - f (inclusive) are randomly
selected to represent the number of components in
parallel (ni) for each subsystem. e and f denote the
constants that control the range of component selection.
Then, the ni components are chosen under a uniform
distribution to the ai different types. Where a feasible
solution is calculated, the initial solution is found;
otherwise, the process is repeated until a feasible initial
solution is obtained.

Is y' better than y ?

St ar t

St op

Yes

Yes

No

l = lmax ?

y' replaces y

Find the best neighbouring
solution (y') of y,

l = 1

Select the set of neighbourhood
structures Nl, l = 1, … , lmax

No

l = l + 1

Generate a feasible initial solution
(y)

)(yNy l∈′

Figure 2. Flow chart of VND_RAP algorithm

2.2 Neighbourhood Structure

This section depicts four kinds of neighbourhood
structures and illustrates with an example, respectively:

Type 1 structure: This structure considers changes on
only one subsystem. Simultaneously replace one type of
component with a different type within the same
subsystem, i.e., yij → yij + 1 and yim → yim - 1 for j ≠ m.
All possibilities are enumerated and all subsystems are
considered. For example, if there are three available
components (I, II, and III) in a subsystem, and the current

 A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem 97

component allocation is as in Figure 3(a). Figures 3(b) to
3(e) show four combinations of neighbouring solutions
generated accordingly and the shaded components are
newly added to replace the existing ones.

I

II

I

I

I

III

II

II

III

II

(a) (b) (c) (d) (e)

Figure 3. An example of neighbourhood type 1

Type 2 structure: They are the same as in a Type 1
structure and changes the number of a particular com-
ponent type by either adding or subtracting one, i.e., yij →
yij + 1 or yij → yij - 1. Each component available in a
subsystem is independently considered. For example,
there are three component types (I, II, and III) available in
a particular subsystem and Figure 4(a) represents the
current allocation with one Type I component and two
Type II components. Then, a total of five possible com-
binations of neighbouring solutions are derived as Figures
4(b) to 4(f), where shaded boxes represent the added
components, and the removed components are marked by
the dashed box.

I

II II

II

(a) (b) (c) (d) (e)

II

I

II

II

II

I

II

I

II

II

III

(f)

I

II

II

I

I

II

Figure 4. An example of neighbourhood type 2

Type 3 structure: This structure considers changes on
two subsystems at a time. Hence, simultaneously add one
component to a certain subsystem and delete one com-
ponent in another subsystem, i.e., yij → yij + 1 and yom →
yom - 1 for i ≠ o. All possibilities are enumerated and all
subsystems are considered. For instance, the current
allocation is demonstrated in Figure 5(a). One possible
neighbouring solution is to add one Component III in
subsystem 1 and delete Component I from subsystem i;
the result is in Figure 5(b) where the shaded box is the
added component without replacing any existing one, and
the dashed box is the eliminated one.

(b)

i1 2

I

III

I

II

III

I

II

II

III

(a)

I

II

I

I

III

I

II

III

II

i1 2
I

Figure 5. An example of neighbourhood type 3

Type 4 structure: They are the same as in a Type 3
structure. This neighbourhood extends the Type 1 neigh-
bourhood above to exchange components in two of many
subsystems simultaneously, i.e., (yij → yij + 1 and yim →
yim - 1) (∪ yoj → yoj + 1 and yom → yom - 1) for j ≠ m and i
≠ o. An example shown in Figure 6 assumes three
component options (denoted by I, II, and III) available in
each subsystem. The example of Figure 6(a) shows the
current status. In subsystem 1, a Component II replaces
one of Component Is. Also, in subsystem i a Component
III substitutes one of Component IIs. Figure 6(b) shows
the result of these two subsystems where the new com-
ponents are shaded.

(a)

I

II

I

I

III

I

II

III

II

i1 2

(b)

II

II

I

I

III

I

III

III

II

i1 2

Figure 6. An example of neighbourhood type 4

2.3 Penalty Function

Coit and Smith (1996b) suggest the use of a penalty
function to evaluate the objective function under a con-
strained problem. An appropriate-designed penalty func-
tion will encourage the algorithm to explore the feasible
region and infeasible region near the border of the
feasible area, and discourage, but permit, further search
into the infeasible region. After generating all neigh-
bouring solutions, the algorithm uses a penalty function
for infeasible solutions (Liang and Smith 2004):

C W

up u
u u

C W
R R

C W

γ γ

= × ×
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5)

where Cu and Wu are total system cost and weight of
solution u respectively. Ru is the unpenalized reliability of
solution u calculated using equation (1). Then, the
penalized reliability Rup for systems that exceed cost
constraint C and/or weight constraint W is calculated by
multiplying the un-penalized objective with two penalty

factors () C

u

C
C

γ

 and () W

u

W
W

γ

 where the exponents

Cγ and Wγ are preset amplification parameters.

3. COMPUTATIONAL RESULTS

The VND_RAP is coded in Borland C++ Builder 5.0
and run with an Intel Pentium IV 2.8GHz PC at 512 MB

98 Yun-Chia Liang·Chia-Chuan Wu

RAM. All computations use real float point precision
without rounding or truncating values. The system
reliability of the final solution is rounded to four digits
behind the decimal point in order to compare them with
results in the literature.

The 33 variations of the Fyffe et al. problem (1968)
as devised by Nakagawa & Miyazaki (1981) were used to
test the performance of VND_RAP. The component
options for the benchmark problems are listed in Table 1.
This problem sets C = 130 and W incrementally de-
creased from 191 to 159. In Fyffe et al. (1968) and Naka-
gawa & Miyazaki (1981), the optimization approaches
require only identical components to be placed in re-
dundancy; however, for the VND_RAP approach, differ-
ent types are allowed to reside in parallel (assuming that
values of nmax = 8 and ki = 1 for all subsystems). The
parameters of the penalty function are set as 1cγ =
and 2Wγ = . Ten runs were made using different random
number seeds for each problem instance.

The following two settings play key roles in the
VND_RAP algorithm: the number of initial components
in each subsystem and the sequence of the neighbourhood
structures. Therefore, details of these two factors are
investigated in sections 3.1 and 3.2. In addition, con-
sidering prior RAP work where component mixing was
allowed on the heuristic benchmarks, the study chose GA
of Coit and Smith (1996a), TS of Kulturel-Konak et al.
(2003), and ACO of Liang and Smith (2004) for com-
parison and will be discussed in section 3.3.

3.1 Number of Initial Components

The generation of an initial solution is controlled by
a range between ki + e and nmax - f (inclusive) determining
the number of components in parallel in each subsystem.
In order to obtain a feasible initial solution close to the
border between the feasible region and the infeasible

region, an investigation is conducted. The algorithm con-
siders both (e = 1, f = 4) and (e = 1, f = 5); in other words,
2 to 4 components and 2 to 3 components are selected for
each subsystem. Figure 7 indicates the maximum reli-
ability over ten runs in 33 instances. Under the least (W =
191~181) and moderate (W = 180~170) constrained
problems, the option of 2~4 components performs equal
or better than that of 2~3 components in 14 out of 22
instances. When the weight constraint becomes stricter
(W = 169~159), the option of 2~3 components outper-
forms the 2~4 components one in 7 out of 11 instances.
Then, with the decrease of the W value, Table 2 shows the
computational expense of the 2~4 components option
grows tremendously. For the most constrained 11 instan-
ces, the average CPU time increases to approximately 96
seconds. However, the 2~3 components option performs
with much less computationally effort. Our results also
show whether the constraints are loose or strict, the
average CPU time always appears lower than 1 second.
To balance solution quality and computational expense,
the 2~4 components option is adopted for the least and
moderate constrained instances, i.e., W = 191~170, and
remaining instances use the 2~3 components option.

0. 94

0. 95

0. 96

0. 97

0. 98

0. 99

191 188 185 182 179 176 173 170 167 164 161

Instance s (denoted by W e ight Constra int)

M
ax

 R
el

ia
ib

il
ty

 o
ve

r
T

en
 R

un
s

e=1,f=4 (2~4 com ponents)

e=1,f=5 (2~3 com ponents)
Figure 7. The effect of number of initial components on

system reliability

Table 1. Component data for test problems (Fyffe et al., 1968)
Component Alternatives (j)

1 2 3 4 Sub-system
(i)

ri1 ci1 wi1 ri2 ci2 wi2 ri3 ci3 wi3 ri4 ci4 wi4

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5
2 0.95 2 8 0.94 1 10 0.93 1 9 n/a n/a n/a
3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4
4 0.83 3 5 0.87 4 6 0.85 5 4 n/a n/a n/a
5 0.94 2 4 0.93 2 3 0.95 3 5 n/a n/a n/a
6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4
7 0.91 4 7 0.92 4 8 0.94 5 9 n/a n/a n/a
8 0.81 3 4 0.90 5 7 0.91 6 6 n/a n/a n/a
9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8
10 0.83 4 6 0.85 4 5 0.90 5 6 n/a n/a n/a
11 0.94 3 5 0.95 4 6 0.96 5 6 n/a n/a n/a
12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7
13 0.98 2 5 0.99 3 5 0.97 2 6 n/a n/a n/a
14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9

 A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem 99

Table 2. The effect of number of initial components on

average CPU time (in seconds)

 191~181 180~170 169~159
2~4 0.339 1.443 95.912
2~3 0.291 0.266 0.582

3.2 The Sequence of Neighbourhood Structures

Hansen and Mladenović (2003) indicate that the key
to successfully employing the VND consists of the proper
definition of neighbourhood structures, and the sequence
of neighbourhood structures, etc. Four types of neigh-
bourhood structures are proposed in section 2.2, so the
number of possible search sequences is 4! = 24. Figure 8
shows the average system reliability over 10 runs in each
possible sequence of neighbourhood structures. The
instances are divided into three groups – 191~181,
180~170, and 169~159 depending on the severity of the
weight constraint. The sequence of 2-3-1-4 outperforms
other sequences in all three groups of instances. In
addition, when starting with a Type 2 neighbourhood, the
average performance is better than starting with other
structures.

Table 3 summarizes the average performance (deno-
ted by Ravg), the best performance (denoted by Rmax), and
theaverage standard deviation (denoted by Stdev) over 10
runs in all 33 instances for each possible se-quence. It
again confirms that the sequence of Type 2-Type 3-Type
1-Type 4 performs the best in all measures. That is this
sequence not only provides the best solution quality but
also is the most robust to the random number seed.
Therefore, in next section, this sequence is used to
compare other best-known heuristics in the literature.

0.9400

0.9450

0.9500

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Sequence of Neighbourhood Structures

Sy
st

em
 R

el
ia

bi
lit

y

191-181 180-170 169-159

Figure 8. The effect of sequence of neighbourhood

structures on average system reliability

3.3 Comparison with Other Metaheuristics

Considering prior RAP works where component
mixing was allowed on the heuristic benchmarks, the
three best-known metaheuristics - GA of Coit and Smith
(1996a), TS of Kulturel-Konak et al. (2003), and ACO of
Liang and Smith (2004) were chosen for comparison.
Each algorithm was run 10 times using different random
number seeds for each instance. Percentages of the
deviation between VND_RAP and other meta-heuristics,
GA, ACO, and TS are displayed in Figure 9. The
performance measure is defined as ((other methods –
VND_RAP) / VND_RAP) × 100%. The best solution
over 10 runs was used for comparison. The deviations for
the less and moderate constrained instances (the first 22)
scatter between 0.15% and 0.35%, and when the
problems become more constrained (the last 11), the
deviations fluctuate between 0.45% and 0.01%. The

Table 3. The effect of sequence of neighbourhood structures on avgR , maxR , and Stdev

Sequence avgR maxR Stdev Sequence avgR maxR Stdev

1-2-3-4 0.9610 0.9669 0.0045 3-1-2-4 0.9594 0.9657 0.0042
1-2-4-3 0.9590 0.9652 0.0046 3-1-4-2 0.9614 0.9668 0.0037
1-3-2-4 0.9595 0.9654 0.0041 3-2-1-4 0.9647 0.9698 0.0044
1-3-4-2 0.9609 0.9665 0.0039 3-2-4-1 0.9640 0.9694 0.0044
1-4-2-3 0.9579 0.9649 0.0050 3-4-1-2 0.9613 0.9664 0.0037
1-4-3-2 0.9595 0.9656 0.0039 3-4-2-1 0.9613 0.9663 0.0037
2-1-3-4 0.9654 0.9701 0.0038 4-1-2-3 0.9578 0.9648 0.0049
2-1-4-3 0.9634 0.9695 0.0043 4-1-3-2 0.9594 0.9656 0.0039
2-3-1-4 0.9672 0.9712 0.0030 4-2-1-3 0.9578 0.9648 0.0049
2-3-4-1 0.9661 0.9702 0.0031 4-2-3-1 0.9578 0.9648 0.0049
2-4-1-3 0.9627 0.9687 0.0040 4-3-1-2 0.9594 0.9656 0.0039
2-4-3-1 0.9628 0.9688 0.0040 4-3-2-1 0.9594 0.9656 0.0039

100 Yun-Chia Liang·Chia-Chuan Wu

average percentage of the deviation VND_RAP over all
33 instances was less than 0.3% compared with other
three methods. In addition, the average standard deviation
of VND_RAP over 330 runs (33 instances with 10 runs
each) was 0.003. Thus, VND_RAP was able to find
comparable solutions to the best-known methods in the
literature and was robust to random number seeds.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Instances (from the least to the most constrained)Pe
rc

en
ta

ge
 D

ev
ia

tio
n

of
 V

N
D

_R
A

P
ve

rs
us

 O
th

er
M

et
ah

eu
ris

tic
s

GA ACO TS

Figure 9. Comparisons of VND_RAP versus GA, ACO,

and TS

It is difficult to make a precise comparison on com-
putational expense. CPU seconds vary according to hard-
ware, software and programmer’s coding skill. Therefore,
the number of solutions generated may provide a better
idea on how efficient an algorithm performs. The number
of solutions generated in GA (Coit and Smith 1996b) was
48,040 (a population size of 40 and stopped after 1200
iterations), the ACO algorithm in Liang and Smith (2004)
needed about 100,000 evaluations (a colony size of 100
with up to 1000 iterations), and TS in Kulturel-Konak et
al. (2003) evaluated an average of 350,000 solutions. The
number of solutions searched in VND_RAP was appro-
ximately 49,000 on average. That is, VND_RAP required
only a similar number of evaluations to GA, less than half
of the ones in ACO, and 1/7 of TS to get the comparable
performance. In addition, the average CPU time of
VND_RAP was 0.73 seconds that was considered as a
reasonable time in solving such a large system.

4. CONCLUSIONS

This paper uses a variable neighbourhood descent
meta-heuristic method to solve the series-parallel redun-
dancy allocation problem. The RAP is a well-known NP-
hard problem generally in a restricted form where each
subsystem must consist of identical components in paral-
lel to make computations tractable. The newer meta-
heuristic methods overcome this limitation and offer a
practical way to solve large instances of the relaxed RAP
where different components can be placed in parallel.
Given the well-structured neighbourhood of the RAP,

variable neighbourhood descent method that has not been
used in reliability design yet is likely to be more effective
and more efficient than one that does not. A VND_RAP
algorithm is proposed and tested on the most well known
benchmark problems from the literature. It has been
shown that VND_RAP performs comparably well to
other meta-heuristics in solution quality and very ef-
ficiently in computational expense consideration. There-
fore, VND and its variations seem very promising for
other NP-hard reliability design problems such as those
found in networks and complex structures.

ACKNOWLEDGEMENT

The authors would like thank Dr. Shu-Kai S. Fan for
his precious comments on this research.

REFERENCES

Bellman, R. and Dreyfus, S. (1958), Dynamic Programm-
ing and the Reliability of Multicomponent Devices,
Operations Research, 6, 200-206.

Besten, M. D. and Stützle, T. (2001), Neighborhoods Re-
visited: an Experimental Investigation into the Effec-
tiveness of Variable Neighborhood Descent for
Scheduling, Proceedings of the 4th Metaheuristics
International Conference, Proto, Portugal, 545-549.

Brimberg, J., P. Hansen, Mladenović, N. and Taillard, É.
(2000), Improvements and Comparison of Heuristics
for Solving the Multisource Weber Problem, Opera-
tions Research, 48(3), 444-460.

Bulfin, R. L. and Liu, C. Y. (1985), Optimal Allocation of
Redundant Components for Large Systems, IEEE
Transactions on Reliability, R-34(3), 241-247.

Chern, M. S. (1992), On the Computational Complexity
of Reliability Redundancy Allocation in a Series
System, Operations Research Letters, 11, 309-315.

Coit, D. W. and Liu, J. (2000), System Reliability Optimi-
zation with k-out-of-n Subsystems, International
Journal of Reliability, Quality and Safety Enginee-
ring, 7(2), 129-143.

Coit, D. W. and Smith, A. E. (1996a), Reliability Optimi-
zation of Series-Parallel Systems Using a Genetic
Algorithm, IEEE Transactions on Reliability, 45(2),
254-260.

Coit, D. W. and Smith, A. E. (1996b), Penalty Guided
Genetic Search for Reliability Design Optimization,
Computers & Industrial Engineering, 30(4), 895-
904.

Coit, D. W. and Smith, A. E. (1996c), Solving the Redun-
dancy Allocation Problem Using a Combined Neural
Network/Genetic Algorithm Approach, Computers
& Operations Research, 23(6), 515-526.

 A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem 101

Fyffe, D. E., Hines, W. W. and Lee, N. K. (1968), System
Reliability Allocation and a Computational Algori-
thm, IEEE Transactions on Reliability, R-17(2), 64-
69.

Ghare, P. M. and Taylor, R. E. (1969), Optimal Redun-
dancy for Reliability in Series Systems, Operations
Research, 17, 838-847.

Hansen, P. and Mladenović, N. (2002), J-Means: A New
Local Search Heuristic for Minimum Sum-of-
Squares Clustering, Pattern Recognition, 34, 405-
413.

Hansen, P. and Mladenović, N. (2003), Variable Neigh-
borhood Search, In F. W. Glover and G. A. Kochen-
berger (eds.), Handbook of Metaheuristics, Kluwer
Academic Publisher, 145-184.

Hertz, A. and Mittaz, M. (2001), A Variable Neigh-
borhood Descent Algorithm for the Undirected
Capacitated Arc Routing Problem, Transportation
Science, 35, 425-434.

Huang, Y.-C. (2003), Optimization of the Series-Parallel
System with the Redundancy Allocation Problem
Using a Hybrid Ant Colony Algorithm, Master
Thesis, Yuan Ze University, Taiwan, R.O.C.

Huang, Y.-C., Her, Z.-S. and Liang, Y.-C. (2002), Re-
dundancy Allocation Using Meta-Heuristics, Pro-
ceedings of the 4th Asia-Pacific Conference on In-
dustrial Engineering and Management System
(APIEMS 2002), Taipei, December 2002, 1758-1761.

Kulturel-Konak, S., Coit, D. W. and Smith A. E. (2003),
Efficiently Solving the Redundancy Allocation Pro-
blem Using Tabu Search, IIE Transactions, 35(6),
515-526.

Kuo, W. and Prasad, V. R. (2000), An Annotated Over-
view of System-reliability Optimization, IEEE Tran-
sactions on Reliability, 49(2), 176-187.

Levitin, G., Lisnianski, A., Ben-Haim, H. and Elmakis, D.
(1998), Redundancy Optimization for Series-Parallel
Multi-State Systems, IEEE Transactions on Reli-
ability, 47(2), 165-172.

Li, J. (1996), A Bound Dynamic Programming for Sol-
ving Reliability Optimization, Microelectronic Reli-

ability, 36(10), 1515-1520.
Liang, Y.-C. (2001), Ant Colony Optimization Approach

to Combinatorial Problems, Ph.D. Dissertation, Au-
burn University, USA.

Liang, Y.-C. and Smith, A. E. (1999), An Ant System
Approach to Redundancy Allocation, Proceedings of
the 1999 Congress on Evolutionary Computation,
Washington D.C., July 1999, 1478-1484.

Liang, Y.-C. and Smith, A. E. (2004), An Ant Colony
Optimization Algorithm for the Redundancy Allo-
cation Problem (RAP), IEEE Transactions on Re-
liability, 53(3), 417-423.

Misra, K. B. and Sharma, U. (1991), An Efficient Algori-
thm to Solve Integer-Programming Problems Arising
in System-Reliability Design, IEEE Transactions on
Reliability, 40(1), 81-91.

Mladenović, N. (1995), A Variable Neighborhood Algori-
thm - A New Metaheuristic for Combinatorial
Optimization, Abstracts of papers presented at Opti-
mization Days, Montréal, 112.

Nakagawa, Y. and Miyazaki, S. (1981), Surrogate Const-
raints Algorithm for Reliability Optimization Pro-
blems with Two Constraints, IEEE Transactions on
Reliability, R-30(2), 175-180.

Ribeiro, C. C. and Souza, M. C. (2002), Variable Neigh-
borhood Search for the Degree-Constrained Mini-
mum Spanning Tree Problem, Discrete Applied
Mathematics, 118, 43-54.

Ribeiro, C. C. and Vianna, D. S. (2005), A GRASP/VND
Heuristic for the Phylogeny Problem Using a New
Neighborhood Structure, International Transactions
in Operational Research, 12, 1-14.

Tillman, F. A., Hwang, C. L. and Kuo, W. (1977a), Opti-
mization Techniques for System Reliability with
Redundancy - A Review, IEEE Transactions on
Reliability, R-26(3), 148-155.

Tillman, F. A., Hwang, C. L. and Kuo, W. (1977b), Deter-
mining Component Reliability and Redundancy for
Optimum System Reliability, IEEE Transactions on
Reliability, R-26(3), 162-165.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

