• Title/Summary/Keyword: Allocation method

Search Result 1,515, Processing Time 0.025 seconds

Parallel Reservoir Analysis of Drought Period by Water Supply Allocation Method (공급량 배분기법을 이용한 갈수기 병렬저수지 해석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • In this study, an optimization technique was developed from the application of allocation rule. The results obtained from the water supply analysis and reliability indices analysis of Andong dam and Imha dam which are consist of parallel reservoir system are summarized as the followings; Allocation rule(C) is effective technique at the parallel reservoir system because results of the water supply analysis, storage analysis and reliability indices analysis is calculated reasonable results. Also, reliability indices analysis results are not sufficient occurrence based reliability or quantity based reliability. Thus reliability indices analysis are need as occurrence based reliability, quantity based reliability vulnerability, resilience, average water supply deficits and average storage. And water supply condition is better varying water supply condition than constant water supply condition.

Performance Analysis of Buffer Allocation Schemes for Controlled Transfer Service in ATM Networks (ATM 망에서 CT 서비스를 위한 버퍼 할당 방식의 성능 분석)

  • 김병철;조유제안윤영권율
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.261-264
    • /
    • 1998
  • Controlled transfer (CT) capability, a new ATM transfer capability (ATC) for high-speed data applications which using credit-based flow control, has recently been proposed and studied in ITU-T. In this paper, we review the existing dyanmic buffer allocation schemes and propose an improved scheme. Also, we compare the performances of the existing buffer allocation methods such as static allocation, flow controlled virtual channels (FCVC), and zero queueing flow control (ZQFC) with the proposed method through simulation. Simulation results show that the proposed scheme exhibits a better performance than the existing schemes in terms of throughput, fairness, queue length and link utilization.

  • PDF

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

The Study on the Dynamic Bandwidth Allocation Algorithm using Cell Delay Variation (셀지연변이를 이용한 동적 대역폭 할당 알고리즘에 관한 연구)

  • 신승호;박상민
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.165-176
    • /
    • 2000
  • Broadband networks are designed to support a wide variety of services with different traffic characteristics and demands for Quality of Services. Bandwidth allocation methods can be classified into two major categories: static and dynamic. In static allocation, bandwidth is allocated only at call setup time and the allocated bandwidth is maintained during a session. In dynamic allocation, the allocated bandwidth is negotiated during a session. The purpose of this paper is to develop policies for deciding and for adjusting the amount of bandwidth requested for a best effort connection over such as ATM networks.. This method is to develop such policies that a good trade off between utilization and latency using cell delay variation to the forecast the incoming traffic in the next period. The performances of the different polices are compared by simulations.

  • PDF

Minimum BER Power Allocation for OFDM-based Cognitive Radio Networks

  • Xu, Ding;Li, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2338-2353
    • /
    • 2015
  • In this paper, the optimal power allocation algorithm that minimizes the aggregate bit error rate (BER) of the secondary user (SU) in a downlink orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) system, while subjecting to the interference power constraint and the transmit power constraint, is investigated under the assumption that the instantaneous channel state information (CSI) of the interference links between the secondary transmitter and the primary receiver, and between the primary transmitter and the secondary receiver is perfectly known. Besides, a suboptimal algorithm with less complexity is also proposed. In order to deal with more practical situations, we further assume that only the channel distribution information (CDI) of the interference links is available and propose heuristic power allocation algorithms based on bisection search method to minimize the aggregate BER under the interference outage constraint and the transmit power constraint. Simulation results are presented to verify the effectiveness of the proposed algorithms.

A study on Spectrum Allocation for Very High Speed Wireless Access Network in 5GHz Band (5GHz대역 초고속 무선랜의 주파수분배에 관한 연구)

  • 허보진;이재욱;박덕규
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.474-479
    • /
    • 2003
  • We discussed the usage of a radio resource, the spectrum allocation and the trends of policy about 5㎓ band in other countries, We studied about the technical regulation on high speed wireless access system and the spectrum allocation of ISM bard in 5㎓ bard for other countries. We also analyzed the efficient use of radio resource, the method of frequency sharing and the calculation of spec01m requirement in noel to progress the high speed wireless access system In addition We proposed the schemes of domestic spectrum allocation for high speed wireless access system at 5㎓ band

  • PDF

Measurement Allocation by Shapley Value in Wireless Sensor Networks

  • Byun, Sang-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • In this paper, we consider measurement allocation problem in a spatially correlated sensor field. Our goal is to determine the probability of each sensor's being measured based on its contribution to the estimation reliability; it is desirable that a sensor improving the estimation reliability is measured more frequently. We consider a spatial correlation model of a sensor field reflecting transmission power limit, noise in measurement and transmission channel, and channel attenuation. Then the estimation reliability is defined distortion error between event source and its estimation at sink. Motivated by the correlation nature, we model the measurement allocation problem into a cooperative game, and then quantify each sensor's contribution using Shapley value. Against the intractability in the computation of exact Shapley value, we deploy a randomized method that enables to compute the approximate Shapley value within a reasonable time. Besides, we envisage a measurement scheduling achieving the balance between network lifetime and estimation reliability.

The Device Allocation Method for Energy Efficiency in Advanced Metering Infrastructures (첨단 검침 인프라에서 에너지 효율을 위한 기기 할당 방안)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • A smart grid is a next-generation power grid that can improve energy efficiency by applying information and communication technology to the general power grid. The smart grid makes it possible to exchange information about electricity production and consumption between electricity providers and consumers in real-time. Advanced metering infrastructure (AMI) is the core technology of the smart grid. The AMI provides two-way communication by installing a modem in an existing digital meter and typically include smart meters, data collection units, and meter data management systems. Because the AMI requires data collection units to control multiple smart meters, it is essential to ensure network availability under heavy network loads. If the load on the work done by the data collection unit is high, it is necessary to allocation new data collection units to ensure availability and improve energy efficiency. In this paper, we discuss the allocation scheme of data collection units for the energy efficiency of the AMI.

Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor Networks

  • Zhang, Xiaoli;Jin, Yongnu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1733-1751
    • /
    • 2015
  • The IEEE 802.15.4 standard not only provides a maximum of seven guaranteed time slots (GTSs) for allocation within a superframe to support time-critical traffic, but also achieves ultralow complexity, cost, and power in low-rate and short-distance wireless personal area networks (WPANs). Real-time wireless body area sensor networks (WBASNs), as a special purpose WPAN, can perfectly use the IEEE 802. 15. 4 standard for its wireless connection. In this paper, we propose an adaptive GTS allocation scheme for real-time WBASN data transmissions with different priorities in consideration of low latency, fairness, and bandwidth utilization. The proposed GTS allocation scheme combines a weight-based priority assignment algorithm with an innovative starvation avoidance scheme. Simulation results show that the proposed method significantly outperforms the existing GTS implementation for the traditional IEEE 802.15.4 in terms of average delay, contention free period bandwidth utilization, and fairness.

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.