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Abstract

In this paper, we consider measurement allocation problem in a spatially correlated sensor field. Our goal is to determine the

probability of each sensor’s being measured based on its contribution to the estimation reliability; it is desirable that a sensor

improving the estimation reliability is measured more frequently. We consider a spatial correlation model of a sensor field

reflecting transmission power limit, noise in measurement and transmission channel, and channel attenuation. Then the

estimation reliability is defined distortion error between event source and its estimation at sink. Motivated by the correlation

nature, we model the measurement allocation problem into a cooperative game, and then quantify each sensor’s contribution

using Shapley value. Against the intractability in the computation of exact Shapley value, we deploy a randomized method that

enables to compute the approximate Shapley value within a reasonable time. Besides, we envisage a measurement scheduling

achieving the balance between network lifetime and estimation reliability. 

Index Terms: Cooperative game theory, Measurement allocation, Sensor networks, Shapley value, Spatial correlation 

I. INTRODUCTION

With considering a sensor field wherein phenomena are spa-

tially correlated, there is a principle that the level of correlation

differs location by location, and which has been exploited in

several different research contexts: placement (or localization)

[1, 2], selection (or activation) [3, 4], density decision [5, 6],

measurement allocation (or observation allocation) [7, 8], power

or rate allocation [9], and considering multi-hop [10].

In this paper, we consider spatial correlation in an inaccessi-

ble sensor field (e.g., enemy line in a battlefield or contaminated

area by radioactive fallout) wherein all sensors are cannoned or

airdropped. In such a sensor field, the degree of contribution of

each sensor differs according to the location of the event source

and each sensor’s own location. Inspired by [11] that has dealt

with the problems of maximizing the estimation reliability in

spatially correlated sensor fields, our work focuses on allocating

the measurements in proportion to the quantified contributions,

namely, measurement allocation. 

The correlated nature of a sensor field encourages us to

model the problem into a cooperative game, and quantify each

sensor’s contribution using a coalition value, namely, Shapley

value [12]. For this, we define the characteristic function as the

inverse of the distortion error between the event source in the

sensor field and its estimation at the sink. In the context of

cooperative game theory, the Shapley value of a sensor gives an

indication of its prospects of estimating event source - the

higher the Shapley value it has, the better it prospects. 

That is, we can quantify each sensor’s contribution in estimat-

ing the event source using Shapley value. Then the probability

of each sensor’s being measured is given in proportion to each

sensor’s Shapley value: allocating measurement probability via

Shapley value.

If we measure only the k best sensors (top k sensors that
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give lowest distortion error in estimating the event source), it

is natural those sensors get depleted quickly, that is, shorter

network lifetime is yielded. However, if we measure the sen-

sors based on the probability determined by Shapley value,

the higher distortion error is observed but we can gain lon-

ger network lifetime. Therefore, we can achieve a balance

between lower distortion error and longer network lifetime.

In spite of those desirable properties, Shapley values have

one major drawback; it is proved that finding the exact

Shapley value is #P-complete (Sharp-P-complete). Therefore

we compute approximate Shapley value using randomized

method [13].

II. SYSTEM MODEL AND METHODS

Our model describes the information collection structure

of sensors in a spatially correlated sensor field considering

limited transmission power, measurement and channel noise,

and channel attenuation. Then, the estimation reliability can

be defined distortion error between the source and its estima-

tion at sink as follows: 

. (1)

Let Wi indicate sensor i’s observation on U, and it is assumed

as a joint Gaussian random variable drawn from

E[Wi] = 0 and var[Wi] = , . (2)

Then K(i, j) = E[WiWj] holds where K(i, j) is a covariance

matrix. We consider isotropic covariance matrix that empha-

sizes the weak dependencies. We let . If γ < 2π for

α > 0,

, (3)

and zero otherwise. Zi and ni denote the measurement noise

and channel noise, respectively, and drawn from i.i.d ~ N(0,

) and i.i.d ~ N(0, ).

Then the received signal by the sink from sensor i is given

by

. (4)

where Pi and hi are the allocated transmission power and the

channel attenuation coefficient for sensor i, respectively. As

done in [11], we premise that the sensors are measured one by

one, which implies non-interfered sensor transmission. Let

 be the estimate of U when only a subset of the sensors

S ⊆ N send the information, and given by

. (5)

Also (1) is rewritten in terms of a subset S as

. (6)

Accordingly, by (2), (4), (5), and (6), the following distor-

tion function DE(S) is yielded.

    (7)

where K(i, j) and K(U, i) is the covariance between sensor i

and j, and the event source and sensor i, respectively.

III. MEASUREMENT ALLOCATION GAME

The measurement allocation problem emphasizes on dis-

tributing measurement to the entire sensor set for balanced

resource consumption even though its objective value is

worse than that of the typical sensor selection problem. In

addition, the uniform measurement yields the best balanced

resource consumption, but it does not regard the quality of

the objective value. Accordingly, by the measurement alloca-

tion, we can get in to a compromising point between the

quality of the objective value and the balanced resource con-

sumption. Thus it is essential to quantify each sensor’s con-

tribution and determine the probability of each sensor’s

being measured in proportion to its contribution.

Prior to giving the game model for the measurement allo-

cation problem, we define the measurement allocation prob-

lem and its accordant measurement allocation game as

follows.

Measurement allocation problem: Allocate the probability

of each sensor’s being measured in proportion to each sen-

sor’s marginal contribution to the reliable estimation of the

event source in the sensor field.

Measurement allocation game: The measurement alloca-

tion game is then a game (N, v) with the characteristic func-

tion for every coalition S ⊆ N:

. (8)

Now the Shapley value of the measurement allocation

game is given by 

(9)
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where

. (10)

Then the probability of each sensor’s being measured

based on the Shapley value is defined as

. (11)

In the measurement allocation game, it gives a way of dis-

tributing the measurement considering the correlation.

IV. RANDOMIZED METHOD

Although the Shapley value has been widely studied from

a theoretical point of view, the problem of its calculation was

proved as a #P-complete (Sharp-P-complete) problem [13].

In order to overcome this intractability, we apply the ran-

domized method [13]. 

The randomized algorithm begins with deciding the size of

permutation samples qX for each coalition size X. For this,

we make a rough assumption that our characteristic function

follows Gaussian normal distribution. Therefore we decide

qX with guaranteeing that the error in the estimation process

is lower than d with 95% maximum allowable error as fol-

lows:

(12)

where σX is standard deviation estimated with small pilot

samples. Then, on each coalition size X, it evaluates the mar-

ginal contribution of each sensor i to the sampled coalition

SX of size X; this evaluation repeats qX times with different

SX on each repetition by

. (13)

Concludingly, the approximate Shapley value of each sen-

sor i is given by

(14)

where Xmax is the maximal number of sensors to be acti-

vated, and given by the sensor application.

The randomized algorithm is detailed as follows:

1: for X = 1 to Xmax do

2:     Decide qX using (12);

3: end for

4: for each i ∈ N do

6:   Ti ← 0;

7:   for X = 1 to Xmax do

9:       Ti
X ← 0;

10:       for k = 1 to qX do

12:            Sample a coalition SkX of size X;

13:           Evaluate the marginal contribution of sensor i

to SkX (that is Δiv(SkX) using (13);

14:            Ti
X ← Ti

X + Δiv(SkX);

15:       end for

16:        Ti ← Ti
X / qX ;

18:      end for

19:      Evaluate the approximate Shapley value of sensor i as:

;

21: end for

Then the probability of each sensor’s being measured is

determined by normalizing the Shapley value with its sum-

mation:

. (15)

V. NUMERICAL EVALUATION

In this section, we use numerical results in order to evaluate

our method within two performance criteria: approximation

quality and balancedness between low distortion error and

prolonged network life time. We consider a sensor field where

sensors are randomly distributed in 500 m × 500 m. We use

the covariance model in (3) with setting α = 0.018. We com-

pute the size of permutation samples with 95% of maximum

allowable error d using 100 sample pilots. Besides, we draw

each sensor’s transmission power randomly in 100 mW to 2 W.

The channel attenuation is modeled as hi,j = K0·10β(i,j)/10·(di,j)
-2,

where K0 = 103, di,j is the distance between i and j, and β(i, j) is

random Gaussian variables with zero mean and standard devia-

tion equal to 6 dB.

A. Approximation Quality

We illustrate the quality of the randomized method by

comparing its results to the exact value and measuring the

standard sampling error. For this evaluation, we set σ2z = σ2w
= 1.0. 

On Fig. 1, the error between the exact Shapley values and

the approximate ones are compared for the sensor field with

20 sensors. It is observed that the maximum error is mea-

sured about 0.012, and in most case, measured below 0.004.

In addition, as expected usually, we notice that larger allow-

able error yields larger sampling error. We next evaluate the

approximate Shapley value with larger set of sensors, and

estimate its accuracy with the standard sampling error. Fig. 2
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plots the results and shows that the sampling error is mea-

sured as less than 0.1%.

B. Balancedness

The last set of experiments is performed in order to investi-

gate the balancedness of each method; balancedness between

average distortion error and network life time that is defined

the duration until all the sensor’s energy get depleted. 

As done in the previous subsection, we also compare with

the greedy and uniform methods: the least balanced and the

most balanced. We distribute 50 sensors on the sensor field,

and assume that each sensor consumes the energy equal to

its transmission power on each measurement. We also

assume that every sensor can be measured 150–200 times

until its energy gets depleted. We fix the covariance bound

to 1.0 since the exact Shapley value cannot be computed

with considering 50 sensors. We iterate the measurement

process with selecting 20 sensors on every iteration accord-

ing to those three selection criteria, and measure the cumula-

tive average distortion error on each iteration. The results are

shown in Fig. 3. On every iteration, the Shapley value-based

measurements select sensors according to their measurement

probabilities. 

It is noticed that the average distortion errors of both the

greedy and Shapley value-based methods start increasing

abruptly from iteration 151 and 174, respectively due to the

energy depletions in the highly contributory sensors. In addi-

tion, while the lifetime of the greedy method expires at itera-

tion 352, the lifetime of the uniform method lasts until 427.

The Shapley value-based method lasts until 390. As expected,

the greedy method always shows lower average distortion

error than the other methods through entire iteration, and the

uniform method always yields the highest. The Shapley

value-based measurements yield lower average distortion

error than the uniform method and longer lifetime than the

greedy method, and which illustrates the balancedness of our

interest.

VI. CONCLUSION

In this paper, we address the measurement allocation prob-

Fig. 2. Approximate Shapley values and their standard sampling error
according to 95% maximum allowable error d in two cases: (a) N = 50 and d

= 0.001 and (b) N = 100 and d = 0.005.

Fig. 3. Cumulative average of the distortion error according to the

measurement iteration. On each measurement iteration, 20 sensors are

chosen among entire 50 sensors.

Fig. 1. Comparison of the probability of each sensor’s being measured
determined by the exact Shapley value and the approximate one. Y axis

indicates the amount of error between these two values.
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lem in a spatially correlated sensor field. Our main goal is to

reduce the distortion error between the event source and its

estimation. By the correlation nature, we model this problem

into a cooperative game, and then deploy Shapley value for

fair measurement allocation. The inverse of the distortion

error is defined as a payoff, and the measurement probability

is a reward for sensor’s contribution to reducing the distor-

tion error. To overcome the intractability, we apply the ran-

domized method. Since the computation of the exact Shapley

value is very exhaustive, we deploy the randomized method

that can compute the approximate Shapley value within rea-

sonable time.

Through numerical experiments, we evaluate the random-

ized method by comparing the approximate Shapley value to

the exact one and measuring the sampling error. Finally, we

evaluate our method in terms of both the network lifetime

and achieved distortion error.
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