• 제목/요약/키워드: All-solid-state cell

검색결과 42건 처리시간 0.03초

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Efficient cell design and fabrication of concentration-gradient composite electrodes for high-power and high-energy-density all-solid-state batteries

  • Kim, Ju Young;Kim, Jumi;Kang, Seok Hun;Shin, Dong Ok;Lee, Myeong Ju;Oh, Jimin;Lee, Young-Gi;Kim, Kwang Man
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.129-137
    • /
    • 2020
  • All-solid-state batteries are promising energy storage devices in which high-energy-density and superior safety can be obtained by efficient cell design and the use of nonflammable solid electrolytes, respectively. This paper presents a systematic study of experimental factors that affect the electrochemical performance of all-solid-state batteries. The morphological changes in composite electrodes fabricated using different mixing speeds are carefully observed, and the corresponding electrochemical performances are evaluated in symmetric cell and half-cell configurations. We also investigate the effect of the composite electrode thickness at different charge/discharge rates for the realization of all-solid-state batteries with high-energy-density. The results of this investigation confirm a consistent relationship between the cell capacity and the ionic resistance within the composite electrodes. Finally, a concentration-gradient composite electrode design is presented for enhanced power density in thick composite electrodes; it provides a promising route to improving the cell performance simply by composite electrode design.

Challenges and Improvements of All-Solid-State Batteries

  • Jihyun Jang
    • 대한화학회지
    • /
    • 제67권3호
    • /
    • pp.165-174
    • /
    • 2023
  • The development of all-solid-state batteries (ASSBs) has been gaining attention in recent years due to their potential to offer higher energy densities, improved safety, and longer cycle life compared to conventional lithium-ion batteries. However, several challenges must be addressed to achieve the practical application of ASSBs, such as the development of high-performance solid-state electrolytes, stable electrode-electrolyte interfaces, and cost-effective manufacturing processes. In this review paper, we present an overview of the current state of ASSB research, including recent progress in solid-state electrolyte and cathode/anode materials, and cell architecture. We also summarize the recent advancements and highlight the remaining challenges in ASSB research, with an outlook on the future of this promising technology.

Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu;Choi, Sunho;Do, Jiyae;Lim, Seungwoo;Shin, Dongwook
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.413-418
    • /
    • 2018
  • All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가 (Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

리튬 고체전지용 $LiMn_2O_4$ Composite Cathode의 충방전 특성 (Charge/discharge Properties of $LiMn_2O_4$ Composite Cathode for All-solid state Rechargeable Batteris)

  • 김종욱;박계춘;구할본
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1511-1513
    • /
    • 1998
  • The purpose of this study is to research and develop PEO/PVDF electrolytes and $LiMn_2O_4$ composite cathode for all-solid state lithium rechargeable battery. We investigated AC impedance response and charge/discharge cycling of $LiMn_2O_4$/SPE/Li cells. The cell resistance was decreased so much initial charge process from 0% SOC to 100% SOC. The radius of semicircle of $LiMn_2O_4$/SPE/Li cell was so much from initial state to 20th cycling. The discharge capacity of the $LiMn_2O_4$ composite cathode was 144mAh/g based on $LiMn_2O_4$.

  • PDF

3차원 전고체 전극 구조체 형성, 분석 및 성능 예측 기술 동향 (A Review on 3D Structure Formation, Analysis and Performance Prediction Technique for All-solid-state Electrode and Battery)

  • 박주남;진다희;김도환;배경택;이강택;이용민
    • 전기화학회지
    • /
    • 제22권4호
    • /
    • pp.139-147
    • /
    • 2019
  • 고에너지밀도 대용량 리튬이온전지를 채용한 전기자동차 및 에너지저장시스템에서 발생하고 있는 발화사고로 인해, 고안전성 전고체 리튬이차전지(All-solid-state Lithium Secondary Battery, ALSB)에 대한 연구가 국내외에서 활발히 진행되고 있다. 하지만, 단순히 액체전해질을 고체전해질로만 바꾸는 것이 아니라, 이로 인해 수반되는 전극 및 전지 설계와 해석이 크게 달라진다는 점에서 해결해야 될 이슈들이 산재해 있다. 특히, 전지는 전극 설계에 따라 그 성능이 굉장히 상이함에도 불구하고, 실질적인 전고체 전지 실험 구현의 어려움으로 전고체 전극(All-solid-state Electrode, ASSE) 설계에 따른 성능 차이를 체계적으로 비교 분석하여 최적화하는 연구는 매우 제한적이다. 이를 극복하기 위한 방안으로, 가상의 3차원 전고체 전극 구조체를 형성하고, 형성된 구조체를 바탕으로 다양한 성능 결정 파라미터를 도출하며, 더불어 분석 전극을 포함한 전지의 성능까지 예측할 수 있는 기술을 개발하는 연구가 주목을 받기 시작했다. 본 총설에서는 3차원 전고체 전극 구조체 형성부터 전고체 리튬이차전지의 성능을 예측하는 기술까지 각각의 기술들이 갖고 있는 장단점을 폭넓게 다룰 것이며, 나아가 본 기술이 나아갈 최종적인 목표까지 간략히 기술하고자 한다.

On Electric Field Induced Processes in Ionic Compounds

  • Schmalzried, H.
    • 한국세라믹학회지
    • /
    • 제38권6호
    • /
    • pp.499-505
    • /
    • 2001
  • The behaviour of ionic compound crystals under combined chemical and externally applied electrical potential gradients is discussed. Firstly, a systematic overview is given. Then a formal analysis follows. The transport equations of the ions and the electric defects predict that even with reversible electrodes demixing, and in particular decomposition of the compound will occur if the applied d.c. current density is sufficiently high. These predictions are illustrated by appropriate experiments. With the help of the solid solution (Me, Fe)O, where Fe-ions are the dilute species, we investigate experimentally the behaviour of a ternary ionic crystal under a d.c. electric current load. All the compounds were placed in a galvanic cell, and the internal reactions which then could be observed were driven by the electric field in this cell. In addition, we discuss the influence of the electric field on the classical solid state reaction AX+BX=ABX$_2$, if again the reaction couple is placed in a galvanic cell.

  • PDF

고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성 (Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes )

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

고체전지용 $Li_xV_3O_8$ Composite 정극의 전기화학적 특성 (Electrochemical Properties of $Li_xV_3O_8$ Composite Cathode for All-solid state Rechargeable Battery)

  • 김종욱;성창호;구할본;박복기
    • 한국전기전자재료학회논문지
    • /
    • 제11권9호
    • /
    • pp.733-738
    • /
    • 1998
  • 본 논문에서는 고체 리듐 전지를 개발하기 위하여 poly(ethylene oxide) [PEO] 에 $LiClO_4$, poly (vinylidene fluoride) [PVDF] 및 가소제로 propylene carbonate [PC] 와 ethylene carbonate[EC] 등을 혼합여 고분자 저해질을 제조하였다. 또한 고체 리듐 전지용 정극으로써 우수한 특성이 기대되는 $Li_xV_3O_8$을 졸-겔법에 의해 합성하여 $Li_xV_3O_8$SPE/Li cell 의 전기화학적 특성을 측정하였다. 고분자 matrix는 PEO와 PVDE를 혼합 사용한 결과 $PEO_4 PVDF_4LiCIO_4PC_5EC_5$ 고분자 전해질이 상온에서 $5.2 {\times} 10{-3}$ S/cm 의 높은 이온 전도도를 나타냈으며 리듐 이온 transference number는 0.3이었다. 졸-겔법에 의해 제조된 $Li_xV_3O_8$을 사용한 $Li_xV_3O_8$SPE/Li cell의 방전시 cell 저항이 방전 초기에는 비소한 증가를 하다가 방전 말기 전압인 2.0V에서 크게 증가하였다. $Li_xV_3O_8$ composite 정극의 첫 번째 방전 용량은 295㎃h/g이었으며 8번째 충방전 싸이클부터 방전 용량이 안정화 되었고 15번째 방전 용량도 212㎃h/g으로 고체 전지용 정극으로써 우수한 특성을 보였다.

  • PDF