DOI QR코드

DOI QR Code

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2018.03.16
  • Accepted : 2018.04.23
  • Published : 2018.09.30

Abstract

In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Keywords

References

  1. J.B. Goodenough and K.S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  2. M.S. Whittingham, Chem. Rev., 2004, 104(10), 4271-4301. https://doi.org/10.1021/cr020731c
  3. M.H. Pyun and Y.J. Park, Nanoscale Res. Lett., 2016, 11, 272-281. https://doi.org/10.1186/s11671-016-1483-9
  4. B. Scrosati and J. Garche, J. Power Sources, 2010, 195(9), 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  5. C.S. Kim and Y.J. Park, Solid State Ionics, 2014, 268, 210-215. https://doi.org/10.1016/j.ssi.2014.06.014
  6. M.H. Pyun and Y.J. Park, J. Alloys Compounds, 2015, 643, S90-S94. https://doi.org/10.1016/j.jallcom.2014.11.237
  7. C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, and J. Zhang, Nano Energy, 2017, 33, 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  8. M. Tatsumisago, M. Nagao, and A. Hayashi, J. Asian Ceram. Soc., 2013, 1(1), 17-25. https://doi.org/10.1016/j.jascer.2013.03.005
  9. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, Nat. Energy, 2016, 1(4), 16030. https://doi.org/10.1038/nenergy.2016.30
  10. R. J. Chen, Y. B. Zhang, T. Liu, B. Q. Xu, Y. H. Lin, C. W. Nan, and Yang Shen, ACS Appl. Mater. Interfaces, 2017, 9(11), 9654-9661. https://doi.org/10.1021/acsami.6b16304
  11. D. Y. Oh, Y. J. Nam, K. H. Park, S. H. Jung, S. J. Cho, Y. K. Kim, Y. G. Lee, S. Y. Lee, and Y. S. Jung, Adv. Energy Mater., 2015, 5(22), 1500865. https://doi.org/10.1002/aenm.201500865
  12. S. H. Choi, J. H. Kim, M. Y. Eom, X. Meng, and D. W. Shin, J. Power Sources, 2015, 299, 70-75. https://doi.org/10.1016/j.jpowsour.2015.08.081
  13. T. Hakari, M. Deguchi, K. Mitsuhara, T. Ohta, K. Saito, Y. Orikasa, Y. Uchimoto, Y. Kowada, A. Hayashi, and M. Tatsumisago, Chem. Mater., 2017, 29(11), 4768-4774. https://doi.org/10.1021/acs.chemmater.7b00551
  14. J.W. Fergus, Solid State Ionics, 2012, 227, 102-112. https://doi.org/10.1016/j.ssi.2012.09.019
  15. H. Aono, J. Electrochem. Soc., 1990, 137(4), 1023-1027. https://doi.org/10.1149/1.2086597
  16. S. A. Yoon, N. R. Oh, A. R. Yoo, H. G. Lee, and H. C. Lee, J. Korean Ceram. Soc., 2017, 54(4), 278-284. https://doi.org/10.4191/kcers.2017.54.4.02
  17. A. Sakuda, A. Hayashi, and M. Tatsumisago, Chem. Mater., 2009, 22(3), 949-956. https://doi.org/10.1021/cm901819c
  18. Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, Energy Environ. Sci., 2014, 7(2), 627-631. https://doi.org/10.1039/C3EE41655K
  19. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Adv. Mater., 2005, 17(7), 918-921. https://doi.org/10.1002/adma.200401286
  20. N. Kamaya, et al, Nat. Mater, 2011, 10(9), 682-686. https://doi.org/10.1038/nmat3066
  21. D. H. Kim, D. Y. Oh, K. H. Park, Y. E. Choi, Y. J. Nam, H. A. Lee, S. M. Lee, and Y. S. Jung, Nano Lett., 2017, 17(5), 3013-3020. https://doi.org/10.1021/acs.nanolett.7b00330
  22. E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, and C. Liang, J. Am. Chem. Soc, 2015, 137(4), 1384-1387. https://doi.org/10.1021/ja508723m
  23. W. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schroder, R. Koerver, T. Leichtweiss, P. Hartmann, W. G. Zeier, and J. Janek, ACS Appl. Mater. Interfaces, 2017, 9, 17835-17845. https://doi.org/10.1021/acsami.7b01137
  24. M. Sumita, Y. Tanaka, M. Ikeda, and T. Ohno, J. Phys. Chem., 2016, 120(25), 13332-13339.
  25. J. Auvergniot, A. Cassel, J. B. Ledeuil, V. Viallet, V. Seznec, and R. Dedryvere, Chem. Mater., 2017, 29(9), 3883-3890. https://doi.org/10.1021/acs.chemmater.6b04990
  26. R. Koerver, I. Aygun, T. Leichtweis, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, and J. Janek, Chem. Mater., 2017, 29(13), 5574-5582. https://doi.org/10.1021/acs.chemmater.7b00931
  27. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, and T. Sasaki, Electrochem. Commun., 2007, 9(7), 1486-1490. https://doi.org/10.1016/j.elecom.2007.02.008
  28. S. Teng, J. Tan, and A. Tiwari, Solid State Sci., 2014, 18(1), 29-38. https://doi.org/10.1016/j.cossms.2013.10.002
  29. V. Thangadurai, S. Narayanan, and D. Pinzaru, Chem. Soc. Rev., 2014, 43(13), 4714-4727. https://doi.org/10.1039/c4cs00020j
  30. Y.H. Cho, P.G. Oh, and J.P. Cho, Nano Lett., 2013, 13(3), 1145-1152. https://doi.org/10.1021/nl304558t
  31. H.J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233. https://doi.org/10.1016/j.jpowsour.2013.01.154
  32. J. Kim, H. Kim, and K. Kang, J. Korean Ceram. Soc., 2018, 55(1), 21-35. https://doi.org/10.4191/kcers.2018.55.1.08
  33. C.S. Kim, J.H. Cho, and Y.J. Park, Mater. Res. Bull., 2014, 58, 49-53. https://doi.org/10.1016/j.materresbull.2014.03.031
  34. X. Li, J. Liu, X. Meng, Y. Tang, M.N. Banis, J. Yang, Y. Hu, R. Li, M. Cai, and X. Sun, J. Power Sources, 2014, 247, 57-69. https://doi.org/10.1016/j.jpowsour.2013.08.042
  35. S.-H. Lee, C.S. Yoon, K. Amine, and Y.-K. Sun, J. Power Sources, 2013, 234, 201-207. https://doi.org/10.1016/j.jpowsour.2013.01.045
  36. H.G. Song, J.Y. Kim, K.T. Kim, and Y.J. Park, J. Power Sources, 2011, 196(16), 6847-6855. https://doi.org/10.1016/j.jpowsour.2010.09.027
  37. M.I. Pantyukhina, V.P. Obrosov, A.P. Stepanov, V.I. Voronin, and N.N. Batalov, Crystallogr. Rep, 2004, 49(4), 676-679. https://doi.org/10.1134/1.1780636
  38. S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.-W. Baek, J.-M. Lee, S.k. Doo, N. Machida, J. Power Sources, 2014, 248, 943-950. https://doi.org/10.1016/j.jpowsour.2013.10.005
  39. J. W. Lee and Y. J. Park, Sci. Adv. Mater., accepted, doi:10.1166/sam.2017.3238
  40. H.S. Lui, Z.R. Zhang, Z.L. Gong, and Y. Yang, Electrochem. Solid-State Lett., 2004, 7(7), A190-A193. https://doi.org/10.1149/1.1738471