DOI QR코드

DOI QR Code

A Review on 3D Structure Formation, Analysis and Performance Prediction Technique for All-solid-state Electrode and Battery

3차원 전고체 전극 구조체 형성, 분석 및 성능 예측 기술 동향

  • Park, Joonam (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) ;
  • Jin, Dahee (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) ;
  • Kim, Dohwan (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) ;
  • Bae, Kyung Taek (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) ;
  • Lee, Kang Taek (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)
  • 박주남 (대구경북과학기술원에너지공학전공) ;
  • 진다희 (대구경북과학기술원에너지공학전공) ;
  • 김도환 (대구경북과학기술원에너지공학전공) ;
  • 배경택 (대구경북과학기술원에너지공학전공) ;
  • 이강택 (대구경북과학기술원에너지공학전공) ;
  • 이용민 (대구경북과학기술원에너지공학전공)
  • Received : 2019.11.17
  • Accepted : 2019.11.21
  • Published : 2019.11.30

Abstract

Lithium-ion battery (LiB) with high energy density and efficiency has been utilized for the electric vehicle (EV) and energy storage system (ESS) as well as portable devices. However, as explosion accidents have frequently happened till lately, all-solid-state lithium secondary battery (ALSB) began to get in a spotlight because it can secure a very high safety and energy density by substituting flammable organic liquid electrolyte to nonflammable inorganic solid electrolyte. In spite of ALSB's certain merits, it has shown much poorer performance of cells than one of LiB due to some challenges, which have been small or never dealt with in the LiB system. Hence, although plenty of studies made progress to solve them, an approach about design of all-solid-state electrode (ASSE) has been limited on account of difficulty of ALSB's experiments. That is why the virtual 3D structure of an all-solid-state electrode has to be built and used for the prediction of cell performance. In this study, we elucidate how to form the 3D ASSE structure and what to be needed for the simulation of characteristics on ALSB. Furthermore, the ultimate orientation of 3D modeling and simulation for the study of ALSB are briefly suggested.

고에너지밀도 대용량 리튬이온전지를 채용한 전기자동차 및 에너지저장시스템에서 발생하고 있는 발화사고로 인해, 고안전성 전고체 리튬이차전지(All-solid-state Lithium Secondary Battery, ALSB)에 대한 연구가 국내외에서 활발히 진행되고 있다. 하지만, 단순히 액체전해질을 고체전해질로만 바꾸는 것이 아니라, 이로 인해 수반되는 전극 및 전지 설계와 해석이 크게 달라진다는 점에서 해결해야 될 이슈들이 산재해 있다. 특히, 전지는 전극 설계에 따라 그 성능이 굉장히 상이함에도 불구하고, 실질적인 전고체 전지 실험 구현의 어려움으로 전고체 전극(All-solid-state Electrode, ASSE) 설계에 따른 성능 차이를 체계적으로 비교 분석하여 최적화하는 연구는 매우 제한적이다. 이를 극복하기 위한 방안으로, 가상의 3차원 전고체 전극 구조체를 형성하고, 형성된 구조체를 바탕으로 다양한 성능 결정 파라미터를 도출하며, 더불어 분석 전극을 포함한 전지의 성능까지 예측할 수 있는 기술을 개발하는 연구가 주목을 받기 시작했다. 본 총설에서는 3차원 전고체 전극 구조체 형성부터 전고체 리튬이차전지의 성능을 예측하는 기술까지 각각의 기술들이 갖고 있는 장단점을 폭넓게 다룰 것이며, 나아가 본 기술이 나아갈 최종적인 목표까지 간략히 기술하고자 한다.

Keywords

References

  1. R. V. Noorden, 'The rechargeable revolution: A better battery' Nature News, 507, 26-28 (2014). https://doi.org/10.1038/507026a
  2. Y. Ding, Zachary P. Cano, A. Yu, Jun Lu, Z. Chen, 'Automotive Li-Ion Batteries: Current Status and Future Perspectives' Electrochemical Energy Reviews, 2, 1-28 (2019). https://doi.org/10.1007/s41918-018-0022-z
  3. S. P. Sasikala, G. H. Jeong, T. Yun, S. O. Kim, 'A perspective on R&D status of energy storage systems in South Korea' Energy Storage Materials, 23, 154-158 (2019). https://doi.org/10.1016/j.ensm.2019.05.017
  4. S. Byun, J. Park, W. A. Appiah, M. H. Ryou, Y. M. Lee, 'The effects of humidity on the self-discharge properties of Li(Ni1/3Co1/3Mn1/3)O2/graphite and LiCoO2 /graphite lithium-ion batteries during storage' RSC Advances, 7, 10915-10921 (2016). https://doi.org/10.1039/C6RA28516C
  5. D. Jin, D. Song, A. Friesen, Y. M. Lee, M. H. Ryou, 'Effect of Al2O3 ceramic fillers in LiNi1/3Co1/3Mn1/3O2 cathodes for improving high-voltage cycling and rate capability performance' Electrochimica Acta, 259, 578-586 (2018). https://doi.org/10.1016/j.electacta.2017.11.029
  6. K. Kim, S. Byun, J. Choi, S. Hong, M. H. Ryou, Y. M. Lee, 'Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS' ChemPhysChem, 19, 1627-1634 (2018). https://doi.org/10.1002/cphc.201800072
  7. Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, 'Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries' Advanced Materials, 30, 1705702- 1705729 (2018). https://doi.org/10.1002/adma.201705702
  8. Z. Schnell, T. Gunther, T. Knoche, C. Vieider, L. Kohler, A. Just, M. Keller, S. Passerini, G. Reinhart, 'All-solidstate lithium-ion and lithium metal batteries - paving the way to large-scale production' Journal of Power Sources, 382, 160-175 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.062
  9. S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, 'Sulfide solid electrolytes for allsolid- state lithium batteries: Structure, conductivity, stability and application' Energy Storage Materials, 14, 58-74 (2018). https://doi.org/10.1016/j.ensm.2018.02.020
  10. K. H. Park, Q. Bai, D. H. Kim, D. Y. Oh, Y. Zhu, Y. Mo, Y. S. Jung, 'Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries' Advanced Energy Materials, 8, 1800035-1800059 (2018). https://doi.org/10.1002/aenm.201800035
  11. J. Park, D. Kim, W. A. Appiah, J. Song, K. T. Bae, K. T. Lee, J. Oh, J. Y. Kim, Y.-G. Lee, M. H. Ryou, Y. M. Lee, 'Electrode design methodology for all-solid-state batteries: 3D structural analysis and performance prediction' Energy Storage Materials, 19, 124-129 (2019). https://doi.org/10.1016/j.ensm.2019.03.012
  12. J. Kasemchainan, P. G. Bruce, 'All-Solid-State Batteries and their Remaining Challenges' Johnson Matthey Technology Review, 62(2), 177-180 (2018). https://doi.org/10.1595/205651318X696747
  13. F. Tao, F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, Z. Guo, S. C.-T. Lu, A. T. C. Nee, 'Digital twin-driven product design framework' International Journal of Production Research, 57(12), 3935-3953 (2019). https://doi.org/10.1080/00207543.2018.1443229
  14. P. Hehenberger, D. Bradley 'Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers' Springer (2016).
  15. M. Doyle, J. Newman, 'Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells' Journal of Electrochemical Society, 143(6), 1890-1903 (1996). https://doi.org/10.1149/1.1836921
  16. J. Park, W. A. Appiah, S. Byun, D. Jin, M. H. Ryou, Y. M. Lee, 'Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for largeformat graphite/LiFePO4 lithium-ion batteries' Journal of Power Sources, 365, 257-265 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.094
  17. M. Guo, G.-H. Kim, R. E. White, 'A three-dimensional multi-physics model for a Li-ion battery' Journal of Power Sources, 240, 80-94 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.170
  18. J. Park, D. Kim, D. Jin, C. Phatak, K. Y. Cho, Y.-G. Lee, S. Hong, M. H. Ryou, Y. M. Lee, 'Size e?ects of micropattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries' Journal of Power Sources, 408, 136-142 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.061
  19. D. Hlushkou, A. E. Reising, N. Kaiser, S. Spannenberger, S. Schlabach, Y. Kato, E. Roling, U. Tallarek, 'The influence of void space on ion transport in a composite cathode for all-solid-state batteries' Journal of Power Sources, 396, 363-370 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.041
  20. S. Choi, M. Jeon, J. Ahn, W. D. Jung, S. M. Choi, J.-S. Kim, J. Lim, Y.-J. Jang, H.-G. Jung, J.-H. Lee, B.-I. Sang, H. Kim, 'Quantitative Analysis of Microstructures and Reaction Interfaces on Composite Cathodes in All-Solid-State Batteries Using a Three-Dimensional Reconstruction Technique' ACS Applied Materials & Interfaces, 10, 23740-23747 (2018). https://doi.org/10.1021/acsami.8b04204
  21. Y. Ito, S. Yamakawa, A. Hayashi, M. Tatsumisago, 'Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries' Journal of Materials Chemistry A, 5, 10658-10668 (2017). https://doi.org/10.1039/C7TA01227F
  22. A. Bielefeld, D. A. Weber, J. Janek, 'Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries' Journal of Physical Chemistry C, 123, 1626-1634 (2019). https://doi.org/10.1021/acs.jpcc.8b11043
  23. A. Jokar, B. Rajabloo, M. Desilets, M. Lacroix, 'Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries' Journal of Power Sources, 327, 44- 55 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.036
  24. W. A. Appiah, J. Park, S. Song, S. Byun, M. H. Ryou, Y. M. Lee, 'Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data' Journal of Power Sources, 319, 147- 158 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.052
  25. S. Yang, N. Kim, E. Kim, M. Lim, J. Park, J. Song, S. Park, W. A. Appiah, M. H. Ryou, Y. M. Lee 'A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery' Journal of Korean Electrochemical Society, 22(1), 43-52 (2019). https://doi.org/10.5229/JKES.2019.22.1.43
  26. Y. J. Nam, D. Y. Oh, S. H. Jung, Y. S. Jung, 'Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes' Journal of Power Sources, 375, 93-101 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.031
  27. M. Finsterbusch, T. Danner, C.-L. Tsai, S. Uhlenbruck, A. Latz, O. Guillon, 'High Capacity Garnet-Based All- Solid-State Lithium Batteries: Fabrication and 3DMicrostructure Resolved Modeling' ACS Applied Materials & Interfaces, 10, 22329-22339 (2018). https://doi.org/10.1021/acsami.8b06705