• Title/Summary/Keyword: All-bond 2

Search Result 793, Processing Time 0.031 seconds

THE CHANCE OF ADAPTABILITY CHANCE IN ADHESIVE SYSTEMS TO DENTIN SUBSTRTE ACCORDING TO STORAGE TIME (상아질 접착 후 저장기간에 따른 접착제의 접착력 변화)

  • Cho, Young-Gon;Ban, Il-Hwan;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.204-214
    • /
    • 2005
  • This study compared the microtensile bond strength (${\mu}$TBS) and microscopic change of two 2-step and two 1-step self-etching adhesives to dentin according to storage times in distilled water. Occlusal dentin was exposed in 48 human molars. They were divided to four groups by different adhesives: SE Bond group (Clearfil SE Bond), AdheSE group (AdheSE). Adper group (Adper Prompt L-Pop), and Xeno group (Xeno III) . Each group was stored in 37$^{\circ}C$ distilled water for 1, 15, and 30 days. Resin-bonded specimens were sectioned into beams and subjected to ${\mu}$TBS testing with a crosshead speed of 1 mm/minute. For SEM observation, one specimen was selected and sectioned in each group after each stroage time. Resin-dentin interface was observed under FE-SEM. In all storage times, mean ${\mu}$TBS of SE group was significantly higher than those of other groups (p < 0.05). There was no significant difference between mean ${\mu}$TBS of SE group and AdheSE group among all storage times, but significant difference between 1- and 30-day storage in mean y${\mu}$TBS of Adper group and Xeno group (p > 0.05). For 1-and 15-day storage, all groups showed the close adaptation between resin-dentin interfaces. For 30-day storage, resin-dentin interfaces showed wide gap in Adper group and separate pattern in Xeno III group.

CHANGES IN INTRAPULPAL NERVE ACTIVITY AND OCCLUDING ASPECTS OF DENTINAL TUBULES BY DENTIN DESENSITIZER CONTAINING GLUTARALDEHYDE (Glutaraldehyde계 상아질 과민증 탈감작제에 의한 치수신경 활동성 변화 및 상아세관 폐쇄양상)

  • Kim, Jong-Hwa;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.505-516
    • /
    • 1996
  • The effects of application of dentin desensitizer containing glutaraldehyde (Gluma Desensitizer) and dentin adhesive system (All Bond 2) to the exposed dentin on the intradental nerve activity (INA) and the occluding aspects of dentinal tubules were investigated in cat canine teeth. Single pulp nerve units were dissected from the inferior alveolar nerve and indentified as $A{\delta}$-fiber units. The INAs elicited by 4M NaCl before and after the application of each experimental agent were compared. The morphological changes of exposed dentin surfaces and dentinal tubules in the dentin specimens used to record INAs were observed by SEM. The results obtained were as follows. 1. Eight $A{\delta}$-fiber units (conduction velocity: $8.0{\pm}4.0m$/sec) were identified. 4M NaCl evoked an irregular burst of action potentials which ceased immediately after washing. 2. In 4 $A{\delta}$-fiber units, the change of INA after the application of Gluma Desensitizer was $133.9{\pm}80.7%$ when it was compared with the INA before the application of the same agent. 3. In 4 $A{\delta}$-fiber units, application of All Bond 2 completely abolished the INA induced by 4M NaCl. 4. In specimens applied with Gluma Desensitizer, the formation of hybrid layer as well as the identification of resin penetration and reaction products with proteins in dentinal tubules were not clearly observed in interface between dentin and adhesive resin. In specimens applied with All Bond 2, the gap width of 2-$3{\mu}m$ was formed between exposed dentin and adhesive resin, and the hybrid layer and resin tags were not clearly formed either.

  • PDF

The micro-tensile bond strength of two-step self-etch adhesive to ground enamel with and without prior acid-etching (산부식 전처리에 따른 2단계 자가부식 접착제의 연마 법랑질에 대한 미세인장결합강도)

  • Kim, You-Lee;Kim, Jee-Hwan;Shim, June-Sung;Kim, Kwang-Mahn;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.148-156
    • /
    • 2008
  • Statement of problems: Self-etch adhesives exhibit some clinical benefits such as ease of manipulation and reduced technique-sensitivity. Nevertheless, some concern remains regarding the bonding effectiveness of self-etch adhesives to enamel, in particular when so-called 'mild' self-etch adhesives are employed. This study compared the microtensile bond strengths to ground enamel of the two-step self-etch adhesive Clearfil SE Bond (Kuraray) to the three-step etch-and- rinse adhesive Scotchbond Multi-Purpose (3M ESPE) and the one-step self-etch adhesive iBond (Heraeus Kulzer). Purpose: The purpose of this study was to determine the effect of a preceding phosphoric acid conditioning step on the bonding effectiveness of a two-step self-etch adhesive to ground enamel. Material and methods: The two-step self-etch adhesive Clearfil SE Bond non-etch group, Clearfil SE Bond etch group with prior 35% phosphoric acid etching, and the one-step self-etch adhesive iBond group were used as experimental groups. The three-step etch-and-rinse adhesive Scotchbond Multi-Purpose was used as a control group. The facial surfaces of bovine incisors were divided in four equal parts cruciformly, and randomly distributed into each group. The facial surface of each incisor was ground with 800-grit silicon carbide paper. Each adhesive group was applied according to the manufacturer's instructions to ground enamel, after which the surface was built up using Light-Core (Bisco). After storage in distilled water at $37^{\circ}C$ for 1 week, the restored teeth were sectioned into enamel beams approximately 0.8*0.8mm in cross section using a low speed precision diamond saw (TOPMET Metsaw-LS). After storage in distilled water at $37^{\circ}C$ for 1 month, 3 months, microtensile bond strength evaluations were performed using microspecimens. The microtensile bond strength (MPa) was derived by dividing the imposed force (N) at time of fracture by the bond area ($mm^2$). The mode of failure at the interface was determined with a microscope (Microscope-B nocular, Nikon). The data of microtensile bond strength were statistically analyzed using a one-way ANOVA, followed by Least Significant Difference Post Hoc Test at a significance level of 5%. Results: The mean microtensile bond strength after 1 month of storage showed no statistically significant difference between all adhesive groups (P>0.05). After 3 months of storage, adhesion to ground enamel of iBond was not significantly different from Clearfil SE Bond etch (P>>0.05), while Clearfil SE Bond non-etch and Scotchbond Multi-Purpose demonstrated significantly lower bond strengths (P<0.05), with no significant differences between the two adhesives. Conclusion: In this study the microtensile bond strength to ground enamel of two-step self-etch adhesive Clearfil SE Bond was not significantly different from three-step etch-and-rinse adhesive Scotchbond Multi-Purpose, and prior etching with 35% phosphoric acid significantly increased the bonding effectiveness of Clearfil SE Bond to enamel at 3 months.

The effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement

  • Tuncdemir, Ali Riza;Yildirim, Cihan;Ozcan, Erhan;Polat, Serdar
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.457-463
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare the effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement. MATERIALS AND METHODS. Fifty-five incisors extracted due to periodontal problems were used. All teeth were instrumented using a set of rotary root canal instruments. The post spaces were enlarged for a No.14 (diameter, 1.4 mm) Snowlight (Abrasive technology, OH, USA) glass fiber reinforced composite post with matching drill. The teeth were randomly divided into 5 experimental groups of 11 teeth each. The post spaces were treated with the followings: Group 1: 5 mL 0.9% physiological saline; Group 2: 5 mL 5.25% sodium hypochlorite; Group 3: 5 mL 17% ethylene diamine tetra acetic acid (EDTA), Group 4: 37% orthophosphoric acid and Group 5: Photodynamic diode laser irradiation for 1 minute after application of light-active dye solution. Snowlight posts were luted with self-adhesive resin cement. Each root was sectioned perpendicular to its long axis to create 1 mm thick specimens. The push-out bond strength test method was used to measure bond strength. One tooth from each group was processed for scanning electron microscopic analysis. RESULTS. Bond strength values were as follow: Group 1 = 4.15 MPa; Group 2 = 3.00 MPa; Group 3 = 4.45 MPa; Group 4 = 6.96 MPa; and Group 5 = 8.93 MPa. These values were analysed using one-way ANOVA and Tukey honestly significant difference test (P<.05). Significantly higher bond strength values were obtained with the diode laser and orthophosphoric acid (P<.05). There were no differences found between the other groups (P> .05). CONCLUSION. Orthophosphoric acid and EDTA were more effective methods for removing the smear layer than the diode laser. However, the diode laser and orthophosphoric acid were more effective at the cement dentin interface than the EDTA, Therefore, modifying the smear layer may be more effective when a self-adhesive system is used.

A STUDY ON SHEAR BOND STRENGTH OF COMPOSITE RESIN TO DENTIN FOLLOWING SURFACE TREATMENTS (표면처리에 따른 상아질과 콤포짓드 레진간의 전단결합강도에 관한 연구)

  • Noh, Eun-Hee;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.200-208
    • /
    • 1991
  • The purpose of this study was to observe shear bond strength of composite resin to dentin following surface treatment. Freshly extracted forty-eight sound human molars were used in this study. They were stored at $4^{\circ}C$ physiologic saline solution before experiment. The teeth was then mounted with self curing acrylic resin in brass mold. The buccal surfaces of the teeth were grinding approximately 1.5mm by means of water-irrigated grinding wheel to expose the flattened fresh dentin surfaces. The specimens were divided into 6 groups according to preparation and treatment procedures on dentin surfaces; Group 1: Untreated after preparation with No.301 diamond point Group 2: Treated with primer for 60 seconds after preparation with No.301 diamond point Group 3: Untreated after preparation with No.700 fissure carbide bur Group 4: Treated with primer for 60 seconds after preparation with No.700 fissure carbide bur Group 5: Untreated after grinding with 600 grit silicon carbide paper Group 6: Treated with primer for 60 seconds after grinding with 600 grit silicon carbide paper Light cure dental adhesive was applicated to each specimen. Silux plus(3M) was inserted then into polyethylene tube of 3mm diameter and 3mm height, and polymerized to dentin surface. All of the specimens were stored in distilled water at $35.6^{\circ}C$ for 24 hours prior to testing. The shear bond strength was measured using an Instron Universal Testing Machine. The results obtained from this study were as follows: 1. The shear bond strength to dentin was the highest in group II. 2. The shear bond strength to dentin was the lowest in group III. 3. There was no significant difference in shear bond strength to dentin according to preparation instrument. 4. The primer treatment group showed significantly greater shear bond strength than untreated group.

  • PDF

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.

A Study on the Shear Bond Strength of Veneering Ceramics to the Lithium Disilicate (IPS e.max CAD) Core (Lithium Disilicate (IPS e.max CAD) 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2013
  • The purpose of this study was to investigate the shear bond strength between various commercial all-ceramic system core and veneering ceramics, and evaluate the clinical stability by comparing the conventional metal ceramic system. The test samples were divided into three groups: Ni-Cr alloy (metal bond), yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) (zirconia bond), lithium disilicate (lithium disilicate bond). The veneering porcelain recommended by the manufacturer for each type of material was fired to the core. After firing, the specimens were subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.50 mm/min until failure. Average shear strengths (mega pascal) were analyzed with a one-way analysis of variance and the Tukey test (${\alpha}$=0.05). The mean shear bond strength${\pm}$SD in MPa was $44.79{\pm}2.31$ in the Ni-Cr alloy group, $28.32{\pm}4.41$ in the Y-TZP group, $15.91{\pm}1.39$ in the Lithium disilicate group. The ANOVA showed a significant difference among groups (p<0.05). None of the all-ceramic system core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

A STUDY ON THE TENSILE BOND STRENGTH BETWEEN VARIOUS RESIN TRAY MATERIALS AND RUBBER IMPRESSION MATERIALS (수종의 트레이 레진과 고무 인상재간의 인장 접착강도에 관한 연구)

  • Song Kyung-Won;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.351-365
    • /
    • 2001
  • For accurate impression taking, accurate impression material, solid individual tray, and bond strength between impression materials and resin tray are important factors. The purpose of this study was to evaluate tensile bond strength of rubber impression materials to various tray resin materials. This study tested the time dependent tensile bond strength between commercial brands or poly ether, polysulfide, additional silicone impression materials and commercial brands of self curing tray resin. light activited tray resin when applying adhesive Resin specimens were made with 20mm in diameter, 2mm in thickness. 1 made total 360 specimens, 10 per each group and the tensile bond strength was measured by using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The results were as follows ; Comparisons of various impression materials. 1. In case of Impregum $F^{(R)}$, the bond strength of tray resin was decreased in order of SR $Ivolen^{(R)}$, Ostron $100^{(R)}$ Instant tray $mix^{(R)}$, $Lightplast^{(R)}$. All groups excluding Ostron $100^{(R)}$, Instant tray $mix^{(R)}$ are significant difference (p<0.05). Drying time after applying adhesive, the tensile bond strength of tray resin was insignificantly decreased in order of 10 min drying time group. 1 min drying time group. 5 min drying time group. 2. In case of Permlastic $regular^{(R)}$ the bond strength of tray resin was insignificantly decreased in order of Ostron $100^{(R)}$. SR $Ivolen^{(R)}$, Instant tray $mix^{(R)}$ $Lightplast^{(R)}$. About drying time after applying adhesive, the tensile bond strength of tray resin was significantly decreased in order of 5 min drying time group, 10 min drying time group, 1 min drying time group(p<0.05). 3. In case of Exaflex $regular^{(R)}$. the bond strength of tray resin was decreased in order of $Lightplast^{(R)}$, SR $Ivolen^{(R)}$, Instant tray $mix^{(R)}$, Ostron $100^{(R)}$. $Lightplast^{(R)}$ was significant difference(p<0.05). About drying time after applying adhesive, the tensile bond strength of tray resin was decreased in order of 5 min drying time group, 10 min drying time group, 1 min drying time group(p<0.05). Especially 5 min ding time group was significant difference(p<0.05). According to the results of this study, we can see the greatest tensile bond strength when using Impregrm $F^{(R)}$ and Permlastic $regular^{(R)}$ with self curing tray resin, when using Exaflex $regular^{(R)}$ with light activated tray resin In my opinion, adhesive should be dried more than 5 min before impression taking to achieve the greatest tensile bond strength.

  • PDF

Effect of Surface Treatment of Porcelain on Tensile Bond Strength (도재의 표면처리가 인장접착강도에 미치는 영향)

  • KIM, Shin-Geun;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.301-307
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of surface treatment of porcelain on tensile bond strength. To accomplish this purpose, this study was carried out with 120 samples which were divided into 12 groups with each 10 samples, and the first group was not surface treated, groups 2 through 5 underwent single surface treatment, and groups 6 through 12 underwent compound surface treatment. The results were as follows : 1. In statistic, all the single surface-treated groups showed higher tensile bond strength than the non surface-treated group and the sandblasted group showed the highest tensile bond strength as $10.34{\pm}2.50MPa$. 2. All the compound surface-treated groups showed no noticeable difference in the tensile bond strength(9-11.5MPa). 3. In statistic, no significant difference was found between the sandblasted group and the compound surface-treated groups. 4. There was no fracture of porcelain while testing in this study. Above study demonstrated that compound surface treatment or sandblasing, if used single surface treatment, should be employed to guarantee successful clinical application.

  • PDF