• Title/Summary/Keyword: Alkalophilic Bacillus sp

Search Result 74, Processing Time 0.022 seconds

Characterization of $\beta$-1,4-D-arabinogalactanase from Alkalophilic Bacillus sp. HJ-12 (호알칼리성 Bacillus sp. HJ-12 유래 $\beta$-1,4-D-arabinogalactanase의 특성)

  • 신해헌;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.710-716
    • /
    • 1995
  • $\beta $-1, 4-D-arabinogalactanase isolated from alkalophilic Bacillus sp. HJ-12, approximate Mw 42 kDa, was generally stable in the range of pH 6-10 and below 50$\circ$C and its highest activity was observed at 60$\circ$C with pH 7-9. The isolated $\beta $-1, 4-D-arabinogalactanase specifically hydrolyzed $\beta $-1, 4-galactosyl linkage that is the major structure of soybean arabinogalactan (SAG) but not $\beta $-1, 3-galactosyl linkage of the other polysaccharides. K. was estimated as 0.67 mg/ml by the method of Hanes-Woolf plot. No metals and chemical reagents inhibited the enzyme activity but urea did. The active site of this enzyme assumed to be tryptophan residue. The hydrolysis products from SAG, assayed by gel chromatography, TLC and HPLC, were predominantly galactotetraose (Gal$_{4}$) and triose (Gal$_{3}$) with a small portion. $\beta $-1, 4-D-arabinogalactanase hydrolyzed ONPG as well as SAG, and the degree of hydrolysis of SAG was 15% which is lower than that by the other $\beta $-1, 4-galactanases from different sources. SAG treated with this enzyme resulted in the reduction of specific viscosity up to 70%.

  • PDF

Effect of pH on the Cell Wall and Cell Membrane of Bacillus sp. SH-8 Bacillus sp. SH-8M (Bacillus sp. SH-8과 Bacillus sp. SH-8M의 세포벽과 세포막에 미치는 pH의 영향)

  • 심창환;정용준;신원철
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.31-35
    • /
    • 1995
  • Using the alkalophillic Bacillus sp. SH-8 and its mutant Bacillus sp. SH-8M capable of growing at the neutral pH, the amino acid compositions of the cell wall and cell membrane were studied at varying cultivation pH's. The pattem of protein electrophoresis was also tested. It was elucidated that the amino acids consisting of the cell wall were alanine, glutamic acid, lysine, aspartic acid, and meso-diaminopimelic acid. There was not any significant difference in the amino acid compositqon betweeo`two straqns regardless of the culture pH. As the results of HPLC ssay, glutamic acid and aspartic aciu accounted for more than 50% in the amqno acid composytqon of the cell wall. By the isolatqon of the crude cell membrane and the SDS-PAGE analysis, it was found that there was a considerable difference qn the protein pattern when the straqns were cultured at the neutral pH. In addition, by the two dimensional gel electrophoresis, it was confirmed that there was a difference in the protein patterns between two strains cultivated at the neutral pH medium but no difference at the alkaline medium.

  • PDF

Purification and Properties of Intracellular Invertase from Alkalophilic and Thermophilic Bacillus cereus TA-11

  • Yoon, Min-Ho;Choi, Woo-Young;Kwon, Su-Jin;Yi, Sung-Hun;Lee, Dae-Hyung;Lee, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.196-201
    • /
    • 2007
  • An intracellular invertase was purified to homogeneity from the cell extract of an alkalophilic and thermophilic Bacillus sp. TA-11, which was classified as a new species belonging to Bacillus cereus based on chemotaxanomic and phylogenetic analyses. The purified enzyme with a recovery of 26.6% was determined to be a monomeric protein with a molecular weight of 23 kDa by SDS-PAGE and 26 kDa by gel filtration. The maximum enzyme activity was observed at pH 7.0 and $50^{\circ}C$, and the purified enzyme was stable at the pH range of 5.0 to 8.0 and below $60^{\circ}C$. $K_m$ and $V_{max}$ values of the enzyme for sucrose were 370 mM and 3.0 ${\mu}M$ per min, respectively. The enzyme activity was significantly inhibited by bivalent metal ions ($Hg^{2+}$, $Cd^{2+}$ and $Cu^{2+}$) and sugars (glucose and fructose).

Studios on the Glutamic Acid Production by an Alkalophilic Bacterium (알칼리성 세균에 의한 글루탐산 생산에 관한 연구)

  • Cho, Kae-Ran;Lee, Kang-Man;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.563-567
    • /
    • 1989
  • An alkalophilic bacterium isolated from compost was selected, identified and tested for the production of glutamic acid from ammonium fumarate. The bacterium was closely related to Bacillus brevis. The conditions for glutamic acid production were pH 8.0, 2% fumaric acid, and 0.8% nutrient broth. The mechanism of glutamic acid formation in this strain was postulated as following scheme. (1) Ammonium fumarate longrightarrow Aspartic acid (2) Aspartic acid + $\alpha$-Ketoglutaric acid longrightarrow Glutamic acid + Oxaloacetic acid.

  • PDF

Selection of the Constitutive Mutant of Bacillus firmus var. alkalophilus and its Characteristics of Cydodextrin Glucanotransferase Production

  • Lee, Yong-Hyun;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 1995
  • To investigate the role of induction on CGTase production for alkalophilic Bacillus firm us var. alkalophilus H609, the constitutive mutants that form a halo around its colonies at non-inducible AG agar media containing amylose and glucose were selected. The selected constitutive mutants could produce CGTase in the range of 18.9 to 28.8 units/ml $\cdot A_{600}$ in the alkaline basal medium, and finally a constitutive mutant Bacillus firmus var. alkalophilus CM46 was selected. The constitutive nature of CM46 was also confirmed in protein level using SDS-PAGE. The effects of induction and catabolite repression for both parent strain Bacillus firmus var. alkalophilus H609 and constitutive mutant CM46 were also compared by adding soluble starch and glucose during cultivation. The selected mutant CM46 was a non-inducible but a catabolite regulated type mutant. Even though inductive regulation was released, the specific CGTase activity defined as CGTase activity per cell concentration was not increased compared with that of parent strain. The cell growth and CGTase production patterns of constitutive mutant Bacillus firmus var. alkalophilus CM46 were compared with the parent strain to identify CGTase production characteristics.

  • PDF

Production of Glycosyl Sucrose by Cyclodextrin Glycosyltransferase of Alkalophilic Bacillus sp. No.4 and Its Application for Low-Cariogenic Sugar (호알칼리성 Bacillus sp. No.4의 Cyclodextrin Glycosyltransferase에 의한 Glycosyl Sucrose의 생산과 저충치성 당으로서의 응용)

  • Sohn, Cheon-Bae;You, Mi-Kyeong;Kim, Myung-Hee;Moon, Suk-Keung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 1991
  • Action of a cyclodextrin glycosyltransferase (CGTase) produced from alkalophilic Bacillus sp. No.4 was studied in a solution containing starch and sucrose to prepare glycosyl sucrose syrup with good sweetness and antidecaying properties of teeth. In the initial stage of the reaction the CGTase produced cyclodextrin, however, the cyclodextrin disappeared and glycosyl sucrose was formed with the lapse of reaction time. The best proportion of sucrose to starch for prodution of glycosyl sucrose was about 1 : 1. The optimum pH and temperature of the coupling reaction was pH 6.0 and $60^{\circ}C$, respectively. Main composition of glycosyl sucrose syrup prepared with 20% starch and 20% sucrose was sucrose 18%, glucosyl sucrose ($G_{2}F$) 15.3% and maltosyl sucorse ($G_{3}F$) 11.3%. And glucose, maltose and maltotriose were produced very little. Smaller amounts of acid and insoluble glucan were formed in the syrup by Streptococcus mtans OMZ176 than in the sucrose. Therefore, the prepared glycosyl sucrose sucrose syrup is expected to prevent teeth from decaying.

  • PDF

Molecular Cloning and Expression of Alkaline Amylase Gene of Alkalophic Bacillus sp. AL-8 and Enzyme Properties in E. coli (호알카리성 Bacillus sp. AL-8의 알카리성 아밀라제 유전자의 대장균에의 클로닝과 발현된 아밀라제의 특징)

  • Bae, Moo;Hwang, Jae-Won;Park, Sin-Hye
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.441-445
    • /
    • 1987
  • The gene coding for alkaline amylase of alkalophilic Bacillus sp. AL-8 was cloned and expressed in Escherichia coli which was lack of amylase activity. For the cloning of the alkaline amylase gene, the chromosomal DNA and plasmid vector pBR322 were cleaved at the site of EcoRI and the gene was cloned. The selection of the transformants carrying the amylase gene was based on the their antibiotics resistance and amylase activity of the transformants. The recombinant plasmids pJW8 and pJW200 containing 5.8Kb and 3.0Kb EcoRI inserts respectively were proved to can the alkaline amylase gene. Alkaline amylase expressed in E. coli was characterized. The enzyme was proved to be stable at the range of alkaline pH.

  • PDF

Effect of pH on Growth and Cultural Characteristics of Bacillus sp. SH-8 and Bacillus sp. SH-8M (Bacillus sp. SH-8과 Bacillus sp. SH-8M의 생육 및 배양 특성에 미치는 pH의 영향)

  • 심창환;신원철;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.371-376
    • /
    • 1992
  • The growth and cultural characteristics of Bacillus sp. SH-8 and SH-8M were investigated at various pH conditions. Bacillus sp. SH-8 showed normal growth pattern above pH 9.0. However, with the pH adjusted below 7.7, 0.$D_{550}$ decreased rapidly with concomitant reduction in viable cell numbers. In contrast, Bacillus sp. SH-8M demonstrated growth capability at pH 7.7, but with slightly reduced growth rate at pH 6.9. Similar results were obtained when those two strains were cultivated on the solid medium. Both of them showed short rod shapes at pH 10.2. However, at pH 7.7 only Bacillus sp. SH-8 was observed to have elongated rod shape. Extracellular pH of both the strains, when cultured at initial pH of 10.2, reached to 9.0 after the incubation of 28 hours. At the initial pH of 9.0 and 9.6, the extracellular pH was reduced at the beginning of cultivation, but elevated after 12 hours. When cultured at initial pH of 6.9 and 7.7, extracelluar pH of Bacillus sp. SH-8M increased to 8.0 and 8.7, respectively, while that of Bacillus sp. SH8 remained constant pH 7.0. The highest sporulation rate of Bacillus sp. SH-8 and SH-8M was obtained at the initial pH of 10.2 and after the incubation of 3 days with the sporulation rate of 95% and 85%, respectively.

  • PDF

Cloning of Thermophilic Alkalophilic Bacillas sp. F204 Cellulase Gene and Its Expression in Escherichia coli and Bacillus subtilis (고온 알칼리성 Bacillus sp. F204의 Cellulase 유전자의 Escherichia coli 및 Bacillus subtilis에의 Cloning 및 발현)

  • Chung, Young-Chul;Kim, Yang-Woo;Kang, Shin-Kwon;Rho, Jong-Su;Park, Jae-Hyeon;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 1991
  • Cellulase genes from thermophilic alkalophilic Bacillus sp. F204 a potent cellulase complex-producing bacterium, were cloned in Escherichia coli with pUC 19. Plasmids pBC191 and pBC192, isolated from transformants forming yellow zone around colony on the LB agar plate containing 0.5% carboxymethyl cellulose and ampicillin, contained 4.6 Kb and 5.8 Kb HindIII fragments, respectively. The 4.6 Kb insert of pBC191 had single sites for BamHI EcoRI, KpnI and pvuII. DNA hybridization and immunodiffusion studies showed that pBC191-encoded cellulase gene was homologous with that of host strain. pKC231, constructed by inserting 4.6 Kb insert of pBC191 at the HindIII site of pKK223-3, E. coli expression vector, and pGC711, constructed by inserting 4.6 Kb insert of pBC191 at the HindIII site of pGR71, E. coli and B. subtilis shuttle vector, had 3.2 times and 2.8 times as much cellulase activity as pBC191, respectively. Substrate specificity analysis showed that cellulases cloned were CMCase.

  • PDF

Cellulase-Free Thermostable Alkaline Xylanase from Thermophilic and Alkalophilic Bacillus sp. JB-99

  • Naik, G.R.;Johnvesly, B.;Virupakshi, S.;Patil, G.N.;Ramalingam
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.153-156
    • /
    • 2002
  • The characterization of a partially purified, cellulase-free, thermostable alkaline xylanase from thermoalkalophilic Bacillus sp. JB-99 was investigated. The xylanase production was the highest when birchwood xylan was added to a medium containing finely powdered rice bran, showing 4,826 IU$ml^-1$ of activity for 15 h of incubation. The partially purified xylanase exhibited an optimum temperature and pH at $70^C{\circ}$ and 10, respectively. The enzyme was stable at pH 5-11 at $50^C{\circ}$. The xylanase activity was strongly inhibited by $Hg^2+$, while dithiothreitol, cysteine, and ${\beta}$-mercaptoethanol enhanced the activity.