• Title/Summary/Keyword: Alignment mechanism

Search Result 154, Processing Time 0.214 seconds

A Study on the Process Simulation Analysis of the High Precision Laser Scriber (고정밀 레이저 스크라이버 장비의 공정 시뮬레이션 분석에 관한 연구)

  • Choi, Hyun-Jin;Park, Kee-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.56-62
    • /
    • 2019
  • The high-precision laser scriber carries out scribing alumina ceramic substrates for manufacturing ultra-small chip resistors. The ceramic substrates are loaded, aligned, scribed, transferred, and unloaded. The entire process is fully automated, thereby minimizing the scribing cycle time of the ceramic substrates and improving the throughput. The scriber consists of the laser optical system, pick-up module of ceramic substrates, pre-alignment module, TH axis drive work table, automation module for substrate loading / unloading, and high-speed scribing control S/W. The loader / unloader unit, which has the greatest influence on the scribing cycle time of the substrates, carries the substrates to the work table that carries out the cutting line work by driving the X and Y axes as well as by adsorbing the ceramic substrates. The loader / unloader unit consists of the magazine up / down part, X-axis drive part for conveying the substrates to the left and right direction, and the vision part for detecting the edge of the substrate for the primary pre-alignment of the substrates. In this paper, the laser scribing machining simulation is performed by applying the instrument mechanism of each component module. Through this study, the scribing machining process is first verified by analyzing the process operation and work area of each module in advance. In addition, the scribing machining process is optimized by comparing and analyzing the scribing cycle time of one ceramic substrate according to the alignment stage module speed.

Photodetection Mechanism in Mid/Far-Infrared Dual-Band InAs/GaSb Type-II Strained-Layer Superlattice

  • No, Sam-Gyu;Lee, Sang-Jun;Krishna, Sanjay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.127-127
    • /
    • 2010
  • Owing to many advantages on indirect intersubband absorption from the hole miniband to the electron miniband based on the type-II band alignment in InAs/GaSb strained-layer superlattice (SLS), InAs/GaSb SLS infrared photodetector (SLIP) has emerged as a promising system to realize high-detectivity quantum photodetector operating up to room temperature in the spectral range of mid-infrared (MIR) to far-infrared (FIR). In particular, n-barrier-n (n-B-n) structure designed for blocking the majority-carrier dark current makes it possible for MIR/FIR dual-band SLIP whose photoresponse (PR) band can be exclusively selected by the bias polarity. In this study, we present the MIR and FIR photoresponse (PR) mechanism identified by dual-band PR spectra and photoluminescence (PL) profiles taken from InAs/GaSb SLIP. In the MIR/FIR PR spectra measured by changing bias polarity, each spectrum individually shows a series of distinctive peaks related to the transitions from the hole subbands to the conduction one. The PR mechanism at each polarity is discussed in terms of diffusion current, and a superposition of MIR-PR in the FIR-PR spectrum is explained by tunnelling of electrons activated in MIR-SLS. The effective FIR-PR spectrum decomposed into three curves for HH1, LH1, and HH2 has revealed the edge energies of 120, 170, and 220 meV, respectively, and the temperature variation of the MIR-PR edge energies shows that the temperature behavior of the SLS systems can be approximately expressed by the Varshni empirical equation.

  • PDF

Fabrication and Performance Test of Small Satellite Camera with Focus Mechanism (포커스 메커니즘이 적용된 소형 위성 카메라의 제작 및 성능 실험)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2019
  • The precise alignment between optical components is required in high-resolution earth observation satellites. However, the misalignment of optical components occurs due to external factors such as severe satellite launch environment and space environment. A satellite optical system with a focus mechanism is required to compensate for the image quality degraded by these misalignments. This study designed, fabricated, aligned precisely, and carried out a performance tests for the image quality of the system. The satellite optical camera performance tests were carried out to check the image quality change by operating the focus mechanism and to analyze the satellite optical system MTF by photographing USAF target using the autocollimator. According to the experimental results, the misalignments can be compensated sufficiently with the focus mechanism. Finally the basic data for re-focusing algorithm of the optical system was obtained through this study.

Design of Articulated Mobile Robot to Overcome Vertical Passages in Narrow Space (수직통로를 극복하기 위한 협소구역 이동용 다관절 로봇 설계)

  • Lee J.S.;Kim S.H.;Yang H.S.;Park N.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.806-811
    • /
    • 2005
  • The robot to search and rescue is used in narrow space where human cannot approach. In case of this robot, it can overcome obstacles such as wrecks or stairs etc. Also, this robot can do various locomotion for each object. In this reason, an articulated robot has advantages comparing with one module robot. However, the existing articulated robot has limits to overcome vertical passages. For expanding contacted territory of robot, a novel mechanism is demanded. In this paper, the novel mechanism of articulated mobile robot is designed for moving level ground and vertical passages. This paper proposes to change wheel alignment. The robot needs two important motions for passing vertical passages like pipe. One is a motion to press wheels at wall for not falling into gravity direction. The other is a motion that wheels contact a vertical direction of wall's tangential direction for reducing loss of force. The mechanism of the robot focused that two motions can be acted to use just one motor. Length of each link of robot is optimized that wheels contact a vertical direction of wall's tangential direction through kinematic modeling of each link. The force of pressing wall of robot is calculated through dynamic modeling. This robot composes four modules. This mechanism is confirmed by dynamic simulation using ADAMS program. The articulated mobile robot is elaborated based on the results of kinematic modeling and dynamic simulation.

  • PDF

Synthesis of an On-Line 5 Degrees of Freedom Error Measurement System for Translational Motion Rigid Bodies (병진운동 강체의 온라인 5자유도 운동오차 측정시스템 설계 및 해석)

  • 김진상;정성종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.93-99
    • /
    • 1998
  • Although laser interferometer measurement system has advantages of measurement range and accuracy, it has some disadvantages when measurement of multi degrees of freedom of motion are required. Because the traditional error measurement methods for geometric errors (two straightness and three angular errors) of a slide of machine tools measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric errors of a moving rigid body in real time processes, an on-line error measurement system for simultaneous detection of the five error components of a moving object is required. Using laser alignment technique and some optoelectronic components, an on-line measurement system with 5 degrees of freedom was developed for the geometric error detection in this study Performance verification of the system has been performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a slide of machine tools.

  • PDF

Growth of vertically aligned carbon nanotubes on silicon substrates by the thermal CVD (열화학기상증착법에 의해 실리콘 기판위에 수직방향으로 정렬된 탄소나노튜브의 성장)

  • 이철진;김대운;이태재;박정훈;손권희;류승철;최영철;박영수;최원석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.275-278
    • /
    • 1999
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD using $C_2$H$_2$gas. Since the discovery of carbon nanotubes, Synthesis of carbon nanotubes for mass production has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is of technological importance for applications to FED. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. Despite such breakthroughs in the growth, the growth mechanism of the alignment are still far from being clearly understood. Furthermore, FED has not been clearly demonstrated yet at a practical level. Here, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and then nanotubes are further grown by the cap growth mechanism.

  • PDF

Induction Mechanism of Planar Arrangement in Cholesteric Liquid Crystals (콜레스테릭 액정의 Planar 배열 유도 메카니즘)

  • Jung, Gap-Ha;Lee, Mong-Ryong;Seo, In-Seon;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.272-276
    • /
    • 2011
  • The induction mechanisms of planar arrangements in cholesteric liquid crystals (CLC) which showed selective reflections of visible light were investigated by measuring the selective reflectivity and FTIR peak intensity of $C{\equiv}N$ stretching band. Although the planar arrangement of CLC was not as perfectly induced as the cases prepared with using alignment layers, it could be also induced by stretching polymer substrate or by applying shear forces. The planar arrangements were induced by forming CLC helical structures on top of liquid crystal molecules which were in contact with the substrate and oriented all in the same direction.

CONSTRUCTION PROJECT CLAIM MANAGEMENT

  • M. ASLAM MIRZA
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.160-168
    • /
    • 2007
  • Conflicts of interest and independent agenda of the parties brought together for implementation of a construction project often leads to dispute in Contract and claim situations. Construction Industry is notorious for claim that is managed on its arising and there lacks an endeavor to minimize the breeding grounds through efficient planning and alignment to purpose, of all contract-documents. There failure of a concerted effort entails wastage of resources, delayed completion of facilities and stained relationships of parties when collide in mistrust in contract to win over the other. There needs a focus on the claim breeding issue and establish an effective mechanism to deal with disputes in urgency. Claim occurs mostly during the construction phase. But the seeds of claim and nutrients essential for development are contained in the contract documentation and the information supplied or not in pre-contract phase. Opportunity to prevent nutrients for seed of Claim comes to an end once tender-documents are finalized, the contract is awarded and established or not a mechanism for dealing with claim situation. The processes presented here would help in minimizing the breeding grounds and emergence of disputes during progression of works and dealing with eventualities in forceful manners for finding a resolution most effectively in relevant time.

  • PDF

Electrokinetic deposition of individual carbon nanotube onto an electrode gap

  • Han Chang-Soo;Seo Hee-Won;Lee Hyung-Woo;Kim Soo-Hyun;Kwak Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2006
  • This paper presents a method for deposition an individual carbon nanotube (CNT). The alignment of a single CNT is very useful to perform studies related to applications in FET (Field Emitted Transistor), SET (Single Electron Transistor) and to make chemical sensor as well as bio sensors. In this study, we developed the deposition method of a CNT individualized in a solution. Using the electrokinetic method, we found the optimum conditions to assemble the nanotube and discussed about plausible explanation for the assembling mechanism. These results will be available to use for making the CNT sensor device.

PHYSICAL CONDITIONS IN DARK INTERSTELLAR CLOUDS: MAGNETIC FIELD STRENGTH AND DENSITY

  • Hong, S.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 1981
  • In order to know how the magnetic field increases with density in interstellar clouds, we have analyzed observations of extinction and polarization for stars in the ${\rho}$ Oph molecular cloud complex. The size of grains in dense parts of the complex is estimated to be larger than the ones in diffuse interstellar clouds by about 15 percent in radii. Employing the Davis-Greenstein mechanism for grain alignment with this estimated grain size, we have put constraints on the exponent in the field-density relation $B{\propto}n^x:1/5{\leq}x{\leq}1/3$. It is concluded that magnetic field in gravitationally contracting clouds increases less steeply than the classical expectation based on the approximation of isotropic contraction with complete frozen-in flux.

  • PDF