• Title/Summary/Keyword: Aligned

Search Result 1,959, Processing Time 0.023 seconds

Structural Formulation of As-grown Vertically Aligned Nanostructures to Multifunctional Thin-Film Frameworks through Controlled Mechanical Rolling (기계적 롤링을 통한 수직배향 나노구조의 다용도 박막 프레임워크 변환)

  • Park, Tae Jun;Choi, Seok Min;Youn, Do Kyung;Lee, Seungjo;Park, Jaekyu;Lee, Jae Hyuk;Kim, Jeong Dae;Lee, Han Kil;Ok, Jong G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-270
    • /
    • 2016
  • We present a useful and practical manufacturing technique that enables the structural conversion of delicate as-grown nanostructures to more beneficial and robust thin-film frameworks through controlled mechanical rolling. Functional nanostructures such as carbon nanotubes grown through chemical vapor deposition in a vertically aligned and very loosely packed manner, and thus difficult to manipulate for subsequent uses, can be prepared in an array of thin blades by patterning the growth catalyst layer. They can then be toppled as dominos through precisely controlled mechanical rolling. The nanostructures formulated to horizontally aligned thin films are much more favorable for device applications typically based on thin-film configuration. The proposed technique may broaden the functionality and applicability of as-grown nanostructures by converting them into thin-film frameworks that are easier to handle and more durable and favorable for fabricating thin-film devices for electronics, sensors, and other applications.

Effects of the Mechanical Stretch on Aligned Multi-Layered Nanofibrous Scaffolds Seeded with Smooth Muscle Cells (기계적 자극이 다층 구조의 나노파이버 지지체의 평활근 세포에 미치는 영향)

  • Shin, Ji-Won;Kim, Dong-Hwa;Heo, Su-Jin;Kim, Su-Hyang;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • The object of this study is to investigate the effects of intermittent cyclic stretching on the smooth muscle cells (SMCs) seeded onto aligned multi-layered fibrous scaffold. To make multi-layered fibrous scaffold, polyurethane (PU) and poly(ethylene oxide) (PEO) were electrospun alternatively, then were immersed into distilled water to extract PEO. Various types of scaffolds were fabricated depending on fiber directions, i.e., aligned or randomly oriented. The direction of stretching was either parallel or vertical to the fiber direction for the aligned scaffolds. The stretching was also applied to the randomly aligned scaffolds. The duration of stretching was 2 min with 15 min resting period. During the stretching, the maximum and minimum strain was adjusted to be 10 and 7%, respectively with the frequency of 1 Hz. The bioactivities of cells on the scaffolds were assessed by quantifying DNA, collagen, and glycosaminoglycan (GAG) levels. And the cell morphology was observed by staining F-actin. SMCs under parallel stretching to the fiber direction responded more positively than those in other conditions. From the results, we could explain the morphological effect of a substrate on cellular activities. In addition the synergistic effects of substrate and mechanical stimuli effects were confirmed.

Liquid Crystal Aligning Capabilities in the Photoaligned TN-Cell on Blending Photopolymer (복합 광폴리머 표면을 이용한 장배향 TN 셀의 액정배향 특성)

  • Hwang, Jeoung-Yeon;Jo, Yong-Min;Seo, Dae-Shik;Suh, Dong-Hack
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.178-181
    • /
    • 2001
  • The electro-optical (EO) characteristics for the twisted-nematic (TN)-liquid crystal display (LCD) photo-aligned with polarized UV exposure on various blending photopolymer surfaces were investigated. Excellent LC alignment and voltage-transmittance (V-T) characteristics for TN-LCD photo-aligned with polarized UV exposure of normal incidence on the blending Photopolymer (polyimide (PI) + PM4Ch (poly(4-methacryloyloxy chalcone))) surface containing chalcone group can be achieved. The EO performances of the TN-LCD photo-aligned on the blending photopolymer can be improved due to the photosensitivity by long side chain of the photopolymer.

  • PDF

A Solid-state NMR Study of the Kinetics of the Activity of an Antimicrobial Peptide, PG-1 on Lipid Membranes

  • Kim, Chul;Wi, Sungsool
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.426-432
    • /
    • 2012
  • The activity of an antimicrobial peptide, protegrin-1 (PG-1), on lipid membranes was investigated using solidstate NMR and a new sampling method that employed mechanically aligned bilayers between thin glass plates. At 95% hydration and full hydration, the peptide respectively disrupted 25% and 86% of the aligned 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) bilayers at a P/L (peptide-to-lipid) ratio of 1/20 under the new experimental conditions. The kinetics of the POPC bilayers disruption appeared to be diffusioncontrolled. The presence of cholesterol at 95% hydration and full hydration reduced the peptide disruption of the aligned POPC bilayers to less than 10% and 35%, respectively. A comparison of the equilibrium states of heterogeneously and homogeneously mixed peptides and lipids demonstrated the importance of peptide binding to the biomembrane for whole membrane disruption.

Solid-state NMR Studies of Membrane Proteins Using Phospholipid Bicelles

  • Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.386-388
    • /
    • 2006
  • Membrane proteins in highly oriented lipid bilayer samples are useful for membrane protein structure determination. We used in the past planar lipid bilayers which were aligned and supported on the glass slide. These samples were mechanically aligned in a magnetic field. However, these stacks of glass slides with planar lipid bilayers are not well suited for use with a commercial solid-state NMR probe with a round coil. Therefore, a homebuilt solid-state NMR probe was built and used with a stack of thin glass plates wherein the RF coil was wrapped directly around the flat square sample. Recently, we began to use magnetically aligned bicelles that are suitable for the structure determination of membrane proteins by solid-state NMR spectroscopy without any effort to build a flat square coil probe. These bicelle samples are well suited for use with a commercial solidstate NMR probe with a round coil, are very easy to prepare and are very stable, so that they can be kept for more than a year. In this paper, we present the solid-state NMR spectra of optimized and magnetically oriented bicelle samples of membrane proteins.

Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

  • Kim, Eun-Hwa;Johnson, Jay R.;Lee, Dong-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

Surface morphology modification of vertically-aligned carbon nanotubes by water vapor exposure

  • Adil, Hawsawi;Jeong, Goo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.238.2-238.2
    • /
    • 2015
  • Surface modification of vertically-aligned carbon nanotube (VACNT) is essential in order to meet specific demands for particular applications such as field emission displays, heat dissipation device and potential sun energy conversion due to their superior electrical and thermal conductivity and strong light absorption. In this study, we observe the effect of exposure to water vapor on a different lengths of the surfaces of VACNT. The study was conducted on three different lengths of the VACNT: short length around $200{\mu}m$, medium-length around $500{\mu}m$, and high length around 1 mm. Water exposure time ranges between 2-10 min and temperature of the water ranges from 60 to 120 oC. The result of water vapor exposure mainly show that increasing the exposure time and water temperature give rise to increase of the speed of change on the surface of the VACNT. Especially, the shorter VACNT change their surface morphology most rapidly.

  • PDF

Photoluminescence property of vertically aligned ZnO nanorods.

  • Das, S.N.;Kar, J.P.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.25.2-25.2
    • /
    • 2009
  • Vertically aligned zinc oxide(ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate with different deposition condition. Based on the surface morphology, ZnO nanostructures are divided into three types: nanoneedles, nanonails and nanorods with rounded tip. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. Low temperature photoluminescence measurements do not show any significant yellow emission, but the near band edge excitonic emission shows very strong dependence with the surface morphology. The recombination properties are expected to be different due to different surface-to-volume ratio and distribution of potential fluctuations of intrinsic defects.

  • PDF

Effect of Electric field on an Injection Velocity in a Vertically Aligned Nematic Liquid Crystal (수직배향 네마틱 액정셀에서의 주입속도에 미치는 전기장 효과)

  • Jeon, Yeon-Mun;Kim, Sang-Gyun;Kim, Youn-Sik;An, Myeong-Hwan;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.695-699
    • /
    • 2006
  • Injection time of liquid crystal (LC) by capillary action in a vertically aligned (VA) nematic LC cell takes longer than that in a homogeneously aligned (HA) LC cell because Miesowicz viscosity in the former is bigger than that in the latter. To reduce liquid crystal injection time in the VA cell, we applied vertical electric field while injecting so that the orientation of LC molecules is changed from vertical alignment to homogeneous alignment. Consequently, the injection speed is improved by 25 % when compared with the cell without an applied field.

Numerical Simulation of Flows Past Two spheres aligned in the streamwise direction (유동 방향으로 놓여진 2개의 구를 지나는 유동에 대한 수치 해석적 연구)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1418-1423
    • /
    • 2004
  • A parametric study on the interactions of two spheres aligned in the streamwise direction is carried out using an immersed boundary method. The numerical results for the case of single sphere for the range of Re ${\leq}$ 300 are in good agreement with other authors' experimental and numerical results currently available. Then, our main investigation is focused on identifying the change of the vortical structures in the presence of a nearby sphere aligned in the streamwise direction for the range Re ${\leq}$ 220. It turns out that significant changes in physical characteristics are noticed depending on how close the two spheres are. In this paper, not only quantitative changes in the key physical parameters such as the force coefficients, but also qualitative changes in vortex structures are reported and analyzed.

  • PDF