DOI QR코드

DOI QR Code

A Solid-state NMR Study of the Kinetics of the Activity of an Antimicrobial Peptide, PG-1 on Lipid Membranes

  • Kim, Chul (Department of Chemistry, Hannam University) ;
  • Wi, Sungsool (Department of Chemistry, Virginia Tech)
  • Received : 2011.09.23
  • Accepted : 2011.11.28
  • Published : 2012.02.20

Abstract

The activity of an antimicrobial peptide, protegrin-1 (PG-1), on lipid membranes was investigated using solidstate NMR and a new sampling method that employed mechanically aligned bilayers between thin glass plates. At 95% hydration and full hydration, the peptide respectively disrupted 25% and 86% of the aligned 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphotidylcholine (POPC) bilayers at a P/L (peptide-to-lipid) ratio of 1/20 under the new experimental conditions. The kinetics of the POPC bilayers disruption appeared to be diffusioncontrolled. The presence of cholesterol at 95% hydration and full hydration reduced the peptide disruption of the aligned POPC bilayers to less than 10% and 35%, respectively. A comparison of the equilibrium states of heterogeneously and homogeneously mixed peptides and lipids demonstrated the importance of peptide binding to the biomembrane for whole membrane disruption.

Keywords

References

  1. Hallock, K. J.; Lee, D. K.; Ramamoorthy, A. Biophys. J. 2003, 84, 3052. https://doi.org/10.1016/S0006-3495(03)70031-9
  2. Hwang, P. M.; Vogel, H. J. Biochem. Cell Biol. 1998, 76, 235. https://doi.org/10.1139/o98-026
  3. Zasloff, M. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 5449. https://doi.org/10.1073/pnas.84.15.5449
  4. Buffy, J. J.; Waring, A. J.; Hong, M. J. Am. Chem. Soc. 2005, 127, 4477. https://doi.org/10.1021/ja043621r
  5. Yeaman, M. R.; Yount, N. Y. Pharmacol. Rev. 2003, 55, 27. https://doi.org/10.1124/pr.55.1.2
  6. Moraes, C. M.; Bechinger, B. Magn. Reson. Chem. 2004, 42, 155. https://doi.org/10.1002/mrc.1321
  7. Mani, R.; Waring, A. J.; Lehrer, R. I.; Hong, M. Biochim. Biophys. Acta, Biomembr. 2005, 1716, 11. https://doi.org/10.1016/j.bbamem.2005.08.008
  8. Mani, R.; Buffy, J. J.; Waring, A. J.; Lehrer, R. I.; Hong, M. Biochemistry 2004, 43, 13839. https://doi.org/10.1021/bi048650t
  9. Yamaguchi, S.; Hong, T.; Waring, A.; Lehrer, R. I.; Hong, M. Biochemistry 2002, 41, 9852. https://doi.org/10.1021/bi0257991
  10. Marasinghe, P. A. B.; Buffy, J. J.; Schmidt-Rohr, K.; Hong, M. J. Phys. Chem. B 2005, 109, 22036. https://doi.org/10.1021/jp054396i
  11. Pokorny, A.; Almeida, P. F. F. Biochemistry 2005, 44, 9538. https://doi.org/10.1021/bi0506371
  12. Matsuzaki, K. Biochim. Biophys. Acta, Rev. Biomembr. 1998, 1376, 391. https://doi.org/10.1016/S0304-4157(98)00014-8
  13. Matsuzaki, K.; Murase, O.; Fujii, N.; Miyajima, K. Biochemistry 1995, 34, 6521. https://doi.org/10.1021/bi00019a033
  14. Matsuzaki, K.; Sugishita, K.-i.; Ishibe, N.; Ueha, M.; Nakata, S.; Miyajima, K.; Epand, R. M. Biochemistry 1998, 37, 11856. https://doi.org/10.1021/bi980539y
  15. Herasimenka, Y.; Benincasa, M.; Mattiuzzo, M.; Cescutti, P.; Gennaro, R.; Rizzo, R. Peptides 2005, 26, 1127. https://doi.org/10.1016/j.peptides.2005.01.020
  16. Richard, J.-A.; Kelly, I.; Marion, D.; Pezolet, M.; Auger, M. Biophys. J. 2002, 83, 2074. https://doi.org/10.1016/S0006-3495(02)73968-4
  17. Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W. Biochemistry 1996, 35, 13723. https://doi.org/10.1021/bi9620621
  18. Matsuzaki, K.; Murase, O.; Tokuda, H.; Funakoshi, S.; Fujii, N.; Miyajima, K. Biochemistry 1994, 33, 3342. https://doi.org/10.1021/bi00177a027
  19. Matsuzaki, K.; Murase, O.; Miyajima, K. Biochemistry 1995, 34, 12553. https://doi.org/10.1021/bi00039a009
  20. Valcarcel, C. A.; Dalla Serra, M.; Potrich, C.; Bernhart, I.; Tejuca, M.; Martinez, D.; Pazos, F.; Lanio, M. E.; Menestrina, G. Biophys. J. 2001, 80, 2761. https://doi.org/10.1016/S0006-3495(01)76244-3
  21. Bechinger, B. Biochim. Biophys. Acta, Biomembr. 2005, 1712, 101. https://doi.org/10.1016/j.bbamem.2005.03.003
  22. Mani, R.; Tang, M.; Wu, X.; Buffy, J. J.; Waring, A. J.; Sherman, M. A.; Hong, M. Biochemistry 2006, 45, 8341. https://doi.org/10.1021/bi060305b
  23. Mecke, A.; Lee, D.-K.; Ramamoorthy, A.; Orr, B. G.; Holl, M. M. B. Biophys. J. 2005, 89, 4043. https://doi.org/10.1529/biophysj.105.062596
  24. Jang, H.; Ma, B.; Woolf Thomas, B.; Nussinov, R. Biophys. J. 2006, 91, 2848. https://doi.org/10.1529/biophysj.106.084046
  25. Heller, W. T.; Waring, A. J.; Lehrer, R. I.; Harroun, T. A.; Weiss, T. M.; Yang, L.; Huang, H. W. Biochemistry 2000, 39, 139. https://doi.org/10.1021/bi991892m
  26. Shai, Y. Biochim. Biophys. Acta, Biomembr. 1999, 1462, 55. https://doi.org/10.1016/S0005-2736(99)00200-X
  27. Wu, M.; Maier, E.; Benz, R.; Hancock, R. E. W. Biochemistry 1999, 38, 7235. https://doi.org/10.1021/bi9826299
  28. Matsuzaki, K. Biochim. Biophys. Acta, Biomembr. 1999, 1462, 1. https://doi.org/10.1016/S0005-2736(99)00197-2
  29. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W. Biophys. J. 2001, 81, 1475. https://doi.org/10.1016/S0006-3495(01)75802-X
  30. Huang, H. W. Biochemistry 2000, 39, 8347. https://doi.org/10.1021/bi000946l
  31. Yang, L.; Weiss, T. M.; Lehrer, R. I.; Huang, H. W. Biophys. J. 2000, 79, 2002. https://doi.org/10.1016/S0006-3495(00)76448-4
  32. Kokryakov, V. N.; Harwig, S. S.; Panyutich, E. A.; Shevchenko, A. A.; Aleshina, G. M.; Shamova, O. V.; Korneva, H. A.; Lehrer, R. I. FEBS Lett. 1993, 327, 231. https://doi.org/10.1016/0014-5793(93)80175-T
  33. Hallock, K. J.; Lee, D.-K.; Omnaas, J.; Mosberg, H. I.; Ramamoorthy, A. Biophys. J. 2002, 83, 1004. https://doi.org/10.1016/S0006-3495(02)75226-0
  34. Washburn, E. W.; West, C. J.; Hull, C. International Critical Tables of Numerical Data, Physics, Chemistry, and Technology; McGraw-Hill: New York, 1926.
  35. Oren, Z.; Shai, Y. Biopolymers 1998, 47, 451. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  36. Zasloff, M. Nature 2002, 415, 389. https://doi.org/10.1038/415389a
  37. Domene, C.; Bond, P. J.; Deol, S. S.; Sansom, M. S. P. J. Am. Chem. Soc. 2003, 125, 14966. https://doi.org/10.1021/ja0364874
  38. Manna, M.; Mukhopadhyay, C. Langmuir: The ACS Journal of Surfaces and Colloids 2009, 25, 12235. https://doi.org/10.1021/la902660q
  39. Norbert Ku erka, S. T.-N.; John, F. N. J. Membrane Biol. 2005, 208, 193. https://doi.org/10.1007/s00232-005-7006-8
  40. Ludtke, S. J.; He, K.; Wu, Y.; Huang, H. W. Biochim. Biophys. Acta, Biomembr. 1994, 1190, 181. https://doi.org/10.1016/0005-2736(94)90050-7
  41. Vogel, M.; Munster, C.; Fenzl, W.; Salditt, T. Phys Rev Lett 2000, 84, 390. https://doi.org/10.1103/PhysRevLett.84.390
  42. Chen, F. Y.; Hung, W. C. Chinese Journal of Physics 1996, 34, 1363.
  43. Buffy, J. J.; McCormick, M. J.; Wi, S.; Waring, A.; Lehrer, R. I.; Hong, M. Biochemistry 2004, 43, 9800. https://doi.org/10.1021/bi036243w
  44. O'Brien, J. S. Science 1965, 147, 1099. https://doi.org/10.1126/science.147.3662.1099
  45. Mani, R.; Cady, S. D.; Tang, M.; Waring, A. J.; Lehrer, R. I.; Hong, M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 16242. https://doi.org/10.1073/pnas.0605079103
  46. Wi, S.; Kim, C. J Phys Chem B 2008, 112, 11402. https://doi.org/10.1021/jp801825k

Cited by

  1. 항균성 펩타이드와 혼합된 인지질 분자의 상 변화에 있어서 수화 효과에 대한 고체 핵자기 공명 연구 vol.26, pp.6, 2012, https://doi.org/10.5806/ast.2013.26.6.395