• 제목/요약/키워드: Algorithm Learning

검색결과 4,976건 처리시간 0.036초

PDA용 개인화 에이전트 시스템 (PDA Personalized Agent System)

  • 표석진;박영택
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.345-352
    • /
    • 2002
  • 무선 인터넷을 이용하는 사용자는 정보의 양의 따른 시간적 통신비용의 증가 문제로 개인화 에이전트가 사용자의 관심에 따라 서비스를 제공하는 기능과 맞춤화된 정보를 제공하는 기능, 지식 기반 방식으로 정보를 예측하는 기능을 가지기를 바라고 있다. 본 논문에서는 이와 같이 무선 인터넷을 사용하는 사용자를 위한 PDA 개인화 에이전트 시스템을 구축하고자 한다. PDA 개인화 에이전트 시스템 구축을 위해 프로파일 기반의 에이전트 엔진과 사용자 프로파일을 이용한 지식기반 방식을 사용한다. 사용자가 웹페이지에서 행하는 행위들을 모니터링하여 사용자가 관심 가지는 문서를 파악하고 정보 검색을 통해 얻어진 문서를 분석하여 사용자 각각의 관심 문서로 나누어 서비스하게 된다. 모니터링 되어진 문서를 효과적으로 분석하기 위해 unsupervised clustering 기계학습 방식인 Cobweb을 이용한다. unsupervised 기계 학습은 conceptual 방식을 이용하여 검색되어진 정보를 사용자의 관심 분야별로 clustering한다. 클러스터링을 통해 얻어진 결과를 다시 기계학습을 통해 사용자 관심문서에 대한 프로파일을 생성하게 된다. 이렇게 만들어진 프로파일을 룰(Rule)로 만들어 이를 기반으로 사용자에게 서비스하게 된다. 이러한 룰은 사용자의 모니터링 결과로 얻어지기 때문에 주기적으로 업데이트하게 된다. 제안하는 시스템은 인터넷신문이나 웹진 등에서 사용자들에게 뉴스를 전달하기 위한 목적으로 생성하는 뉴스문서를 특정 대상으로 선정하였고 사용자 정보를 이용한 검색을 실시하고 결과로 얻어진 정보를 정보 분류를 통해 PDA나 휴대폰을 통해 사용자에게 제공한다. 상품을 검색하기 위한 검색노력을 줄이고, 검색된 대안들로부터 구매자와 시스템이 웹상에서 서로 상호작용(interactivity) 하여 해를 찾고, 제약조건과 규칙들에 의해 적합한 해를 찾아가는 방법을 제시한다. 본 논문은 구성기반 예로서 컴퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of compu

  • PDF

질의 응답 시스템에서 심층적 질의 카테고리의 개념 커버리지에 기반한 의미적 질의 확장 (Semantic Query Expansion based on Concept Coverage of a Deep Question Category in QA systems)

  • 김혜정;강보영;이상조
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권3호
    • /
    • pp.297-303
    • /
    • 2005
  • 질의응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer type) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 흑은 다른 문법적 정보를 가진 카테고리에 등장하여 정답 추출에 어려움이 따른다. 만약, 질의에서 요구하는 정보유형을 보다 깊게 세분화하고, 세분화된 질의 유형과 개념적으로 유사한 문장을 대상으로 정답 추출을 수행할 수 있다면 보다 정확한 정답을 추출할 수 있을 것이다. 따라서, 본 논문은 심층 질의 카테고리의 개념 커버리지에 기반한 효과적인 의미적 질의 확장 방법론을 제안한다. 질의에서 요구하는 정보 유형을 보다 세분화된 심충 질의 카테고리로 나누고, 이러한 심층 질의 카테고리를 표현하기 위해 동원되는 어휘 집합에 질의 확장을 적용함으로써 정답 추출의 성능을 향상시키고자 하였다. 제안된 시스템의 성능 평가를 위하여, TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건과 TREC-9의 질의를 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발 (Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge)

  • 김기중;박유신;박성우
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.414-419
    • /
    • 2020
  • 본 연구에서는 사장교의 케이블 가속도계로부터 확보한 방대한 계측데이터의 활용을 확대하고자 인공지능 기반의 케이블 장력 추정 모델을 개발하였다. 케이블 장력 추정 모델은 진동법에 따른 장력 추정 과정에서 고유진동수를 판정할 수 있는 알고리즘을 핵심으로 하며 학습데이터 구성에 적합하고 판정 결과에 대한 성능이 확보될 수 있도록 입력층, 은닉층, 출력층으로 구성되는 인공신경망(Artificial Neural Network)을 적용하였다. 인공신경망의 학습데이터는 케이블 가속도 계측데이터를 진동수로 변환 후 구성하였으며 고유진동수를 중심으로 일정한 패턴을 갖는 특성을 활용하여 기계학습을 진행하였다. 학습데이터 구성 시 다수 패턴의 고유진동수를 대표할 수 있도록 다양한 크기의 진폭을 갖는 진동수를 사용하고 일정 수준으로 진동수를 누적하여 사용할 경우 고유진동수에 대한 판정 성능이 개선됨을 확인하였다. 장력 추정 모델의 성능을 판단하기 위해 계측분석 기술자에 의해 추정한 장력의 관리기준과 비교하였다. 케이블 가속도계로부터 확보한 139개의 진동수를 입력값으로 사용하여 검증을 수행한 결과 실제 정답과 유사하게 고유진동수를 판정하였고 고유진동수에 의해 케이블의 장력을 추정한 결과는 96.4%의 수준으로 관리기준에 부합하는 결과를 보여주고 있다.

인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법 (An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network)

  • 박진웅;문지훈;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.527-536
    • /
    • 2017
  • 최근 스마트 그리드 산업의 발달과 더불어 효과적인 에너지 관리 시스템의 필요성이 커지고 있다. 특히, 전기 부하 및 에너지 요금 감소를 위해서는 정확한 전력수요 예측과 그에 따른 효과적인 스마트 그리드 운영 전략이 필요하다. 본 논문에서는 보다 정확한 전력수요 예측을 위하여, 수요 시한 기준으로 수집된 전력 사용 데이터를 고시간 해상도로 분할하고, 이에 적합한 인공 신경망 기반의 전력수요 예측 모델을 구축하고자 한다. 예측 모델의 정확도를 향상시키기 위하여 우선, 수열 형태의 시계열 데이터가 가지는 주기성을 제대로 반영하지 못하는 기계 학습 모델의 문제점을 해결하고자, 시계열 데이터를 2차원 공간의 연속적인 데이터로 변환한다. 더욱이, 고시간 해상도에 따른 온도나 습도 등 외부 요인들의 보다 정확한 반영을 위해 이들에 대해서도 선형 보간법을 사용하여 세분화된 시점에서의 값을 추정하여 반영한다. 마지막으로, 구성된 특성 벡터에 대해 주성분 분석 수행을 통하여 불필요한 외부 요인을 제거한다. 예측 모델의 성능을 평가하기 위해서 5겹 교차 검증을 수행하였다. 실험 결과 모든 고시간 해상도에서 성능 향상을 보였으며, 특히 3분 해상도의 경우 3.71%의 가장 낮은 오차율을 보였다.

인공신경망을 이용한 남한의 저서성 대형 무척추동물 군집 유형 (Community Patterning of Bethic Macroinvertebrates in Streams of South Korea by Utilizing an Artificial Neural Network)

  • 곽인실;류광순;박영석;전태수
    • 생태와환경
    • /
    • 제33권3호통권91호
    • /
    • pp.230-243
    • /
    • 2000
  • 1995년까지 우리 나라의 주요 하천을 대상으로 하여 출판된 논문에서 저서성 대형무척추 동물의 주요 분류군 출현현황을 종합적으로 고찰하고 인공신경회로망을 이용하여 유형분석을 하였다. 한강 수계의 11개 지류를 포함한 총 27개 하천에서 5문 10강 26목 108과 571종이 보고되었으며 주로 파리류, 하루살이류, 날도래류, 강도래류, 딱정벌레류, 잠자리류, 빈모류, 복족류 등이 출현하였고 주요 출현분류과는 Ephemerellidae, Baetidae, Heptageniidae, Hydropsychidae, Chironomidae, Hirudinae, Tubificidae, Perlodidae 등이었다. 하천의 군집구성은 환경교란 정도에 따라 세 그룹으로 나뉘어졌고 환경교란에 따라 군집의 종풍부도가 영향을 받았으며 Ephemeroptera, Plecoptera, Trichoptera, Diptera 및 Diptera 내의 Chironomidae에서는 환경교란이 클수록 종풍부도가 많이 감소되었다. 반면 Chironomus속은 교란이 커질수록 종풍부도가 증가되었다. 전 자료를 대상으로 코호넨망에 입력하여 유형화하였을 때 일차적으로 한강, 낙동강, 섬진강 등 주요 수계에 따라 군집이 묶여졌고 다음으로 환경교란에 따라 무리화 되었다. 비교적 청정하거나 오염이 심한 곳의 군집은 비교적 무리화가 잘된 반면 중간 정도로 오염된 곳은 세부군집으로 묶여져 흩어져 나타났다.

  • PDF

신경회로망을 이용한 유출수문곡선 모의에 관한 연구 (A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network)

  • 안경수;김주환
    • 한국수자원학회논문집
    • /
    • 제31권1호
    • /
    • pp.13-25
    • /
    • 1998
  • 신경회로망은 어떤 사상에 대한 인과관계를 연상기억능력을 통하여 인식할 수 있는 기능을 가지고 있을 뿐 아니라 비선형현상에 대한 적응능력이 뛰어나 수문계의 강우-유출 현상에 대한 적용가능성은 많으나 이를 수문학적으로 검증하는데는 아직 검토단계라 할 수 있으며 적용에 따른 방법론에 대한 연구가 필요하다 할 수있다. 본 연구에서는 하천유역에서 호우의 발생에 따른 하천의 홍수유출수문곡선을 모의하기 위한 블랙박스모형으로서 신경회로망이론의 적용에 따른 문제를 수문학적으로 규명하고자 하였다. 이를 위한 방법으로서 홍수발생의 직접적인 원인인 강우패턴을 신경회로망의 입력패턴으로하고 이에 따른 출력패턴을 유출수문곡선이라는 가정하에 신경회로망모형을 구성하고 평창강유역에서 발생된 과거 홍수기록자료를 이용하여 그 결과를 제시하였다. 본 연구결과에 의하면 신경회로망의 학습이 수행되는 동안 어떠한 형태로든 수문학적 개념을 토대로 구성된 모형의 구조에 잘 적응되고 있음을 알수 있었다. 이 결과를 토대로 지금까지 복잡한 과정을 거쳐야하는 강우-유출 모형화 과정에서 발생되는 문제점들을 효율적으로 해결할 수 있는 접근방법으로서 활용될수 있을 것으로 기대된다.

  • PDF

자연수의 나눗셈에 관한 초등학교 학생의 비형식적 지식 (Students' Informal Knowledge of Division in Elementary School Mathematics)

  • 박현미;강완
    • 한국초등수학교육학회지
    • /
    • 제10권2호
    • /
    • pp.221-242
    • /
    • 2006
  • 자연수의 나눗셈에 관해 초등학생이 가진 비형식적 지식을 조사하고 그 결과를 학교에서 지도하는 형식적 지식과 연계하여 의미 있는 시사점을 찾고자 하였다. 이러한 목적을 달성하기 위해 자연수의 나눗셈과 관련하여 형식적 지식을 배우지 않은 학생이 가진 비형식적 지식은 무엇이고, 문제를 해결하는 과정에서 형식적 지식을 학습한 학생과 형식적 지식을 학습하지 쟈은 학생의 사고 전략의 차이를 분석하였다. 이를 위해 1, 2, 3학년 학생을 대상으로 질적 연구를 하여 다음과 같은 결론을 얻었다. 첫째, 자연수의 나눗셈에 관한 초등학생의 비형식적 지식은 구체물에 의한 전략에서부터 사칙연산에 이르기까지 다양하다. 둘째, 형식적 지식을 학습한 학생은 형식적 지식에 문제 해결방법이 한정되어 있어 다양한 전략을 사용하지 못한다. 셋째, 나눗셈 지도가 전혀 이루어지지 않은 1, 2학년 학생이 스스로 비형식적 지식을 사용하여 문제를 해결할 수 있다는 것은 알고리즘의 습득이 문제 해결의 전제조건이 아니라는 것을 보여 준다. 넷째, 수학적 지식을 가르칠 때. 비형식적 지식과 연계하여 형식적 지식을 가르칠 필요가 있다. 다섯째, 수학과의 연산 영역에서도 알고리즘에 치중한 지도가 아닌, 다양한 전략의 지도가 필요하다.

  • PDF

CUDA 연산을 이용한 개선된 영상 매칭 방법에 관한 연구 (A Study on Improved Image Matching Method using the CUDA Computing)

  • 조경래;박병준;윤태복
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2749-2756
    • /
    • 2015
  • 최근 데이터의 질이 높아짐에 따라 영상을 처리하는데 많은 시간이 소모되는 문제가 제기되어 영상 처리 알고리즘의 가속화가 필요하게 됨으로써, 기존의 CPU와 CUDA(Compute Unified Device Architecture) 기반의 인식 시스템에서 연산속도와 성능이득 비교를 위해 OpenMP를 가지고 측정할 수 있는 문자 인식시스템으로 학습된 문자데이터가 입력되면 매칭이 가장 잘 되는 영상의 영역을 인식하는 환경으로 구현하여 각 영문 알파벳의 글씨체가 일정하고 크기가 규격화 되어 있으므로 문자를 학습하고 문자 정합도를 계산하기 위한 영상 매칭 방법을 구현하게 되었다. GPGPU(General Purpose GPU)프로그래밍 플랫폼 기술인 CUDA연산 기법을 이용하여 알고리즘을 빠르고 효율적으로 처리하는 OpenMP에서 인텔 i5 2500의 네 개의 코어를 사용하여 인식 할 때, 기존 CPU의 성능보다 4배의 속도가 나오지 않고 데이터의 분할과 병합 연산의 지연으로 인해 약 3.2배의 속도로 향상되는 가속화 방법을 제안하고 그래픽카드에서 처리하는 병렬처리 결과, 순차적 연산을 수행하였던 CPU 기반의 처리에 비해 성능이득이 약 21X(배)로 향상됨을 확인하였다.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

119 신고 데이터를 이용한 자연어처리 기반 재난안전 상황 분류 알고리즘 분석 (Analysis of Disaster Safety Situation Classification Algorithm Based on Natural Language Processing Using 119 Calls Data)

  • 권수정;강윤희;이용학;이민호;박성호;강명주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권10호
    • /
    • pp.317-322
    • /
    • 2020
  • 인공지능의 발달로 인하여 재난 분야에서는 재난대응 지원 시스템으로 이용되고 있다. 재난은 언제 어디서든지 발생할 수 있으며, 재난 발생 시 소방청 119 신고접수대에 접수되는 신고는 크게 화재, 구조, 구급, 기타 신고 등 4가지로 구분된다. 119 신고에 따른 재난 대응도 그 종류 및 상황에 따라 다르게 대응된다. 본 논문에서는 119 신고 데이터 1280개 문서를 학습 데이터 셋을 이용하여 SVM, NB, k-NN, DT, SGD, RF 상황 분류 기계학습 알고리즘을 3 클래스로 테스트한 분류 성능은 최고 92%, 최소 77%의 성능을 보였다. 인공지능의 발달로 인하여 재난 분야에서는 재난 대응 지원 시스템으로 이용되고 있다. 재난은 언제 어디서든지 발생할 수 있으며, 재난 발생 시 소방청 119 신고접수대에 접수되는 신고는 크게 화재, 구조, 구급, 기타 신고 등 4가지로 구분된다. 119 신고에 따른 재난대응도 그 종류 및 상황에 따라 다르게 대응된다. 본 논문에서는 119 신고 데이터 1280개 문서를 학습 데이터 셋을 이용하여 SVM, NB, k-NN, DT, SGD, RF 상황 분류 알고리즘을 3 클래스로 테스트한 분류 성능은 최고 92%, 최소 77%의 성능을 보였다. 앞으로 다양한 분야의 재난별 데이터 셋을 확보하여 효율적인 재난 대응 연구가 필요하다.