DOI QR코드

DOI QR Code

A Study on Improved Image Matching Method using the CUDA Computing

CUDA 연산을 이용한 개선된 영상 매칭 방법에 관한 연구

  • 조경래 (서일대학교 컴퓨터소프트웨어과) ;
  • 박병준 (서일대학교 컴퓨터소프트웨어과) ;
  • 윤태복 (서일대학교 컴퓨터소프트웨어과)
  • Received : 2014.10.26
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

Recently, Depending on the quality of data increases, the problem of time-consuming to process the image is raised by being required to accelerate the image processing algorithms, in a traditional CPU and CUDA(Compute Unified Device Architecture) based recognition system for computing speed and performance gains compared to OpenMP When character recognition has been learned by the system to measure the input by the character data matching is implemented in an environment that recognizes the region of the well, so that the font of the characters image learning English alphabet are each constant and standardized in size and character an image matching method for calculating the matching has also been implemented. GPGPU (General Purpose GPU) programming platform technology when using the CUDA computing techniques to recognize and use the four cores of Intel i5 2500 with OpenMP to deal quickly and efficiently an algorithm, than the performance of existing CPU does not produce the rate of four times due to the delay of the data of the partition and merge operation proposed a method of improving the rate of speed of about 3.2 times, and the parallel processing of the video card that processes a result, the sequential operation of the process compared to CPU-based who performed the performance gain is about 21 tiems improvement in was confirmed.

최근 데이터의 질이 높아짐에 따라 영상을 처리하는데 많은 시간이 소모되는 문제가 제기되어 영상 처리 알고리즘의 가속화가 필요하게 됨으로써, 기존의 CPU와 CUDA(Compute Unified Device Architecture) 기반의 인식 시스템에서 연산속도와 성능이득 비교를 위해 OpenMP를 가지고 측정할 수 있는 문자 인식시스템으로 학습된 문자데이터가 입력되면 매칭이 가장 잘 되는 영상의 영역을 인식하는 환경으로 구현하여 각 영문 알파벳의 글씨체가 일정하고 크기가 규격화 되어 있으므로 문자를 학습하고 문자 정합도를 계산하기 위한 영상 매칭 방법을 구현하게 되었다. GPGPU(General Purpose GPU)프로그래밍 플랫폼 기술인 CUDA연산 기법을 이용하여 알고리즘을 빠르고 효율적으로 처리하는 OpenMP에서 인텔 i5 2500의 네 개의 코어를 사용하여 인식 할 때, 기존 CPU의 성능보다 4배의 속도가 나오지 않고 데이터의 분할과 병합 연산의 지연으로 인해 약 3.2배의 속도로 향상되는 가속화 방법을 제안하고 그래픽카드에서 처리하는 병렬처리 결과, 순차적 연산을 수행하였던 CPU 기반의 처리에 비해 성능이득이 약 21X(배)로 향상됨을 확인하였다.

Keywords

References

  1. Jiangang Kong,Yangdong Deng, "GPU Accelerated Face Detection", International Conference on Intelligent Control and Information Processing, August13-15, 2010.
  2. J.D.Owens, M.Houston, D.Luebke, S.Green, J.E.Stone and J.C.Phillips, "GPU Computing", Proceedings of the IEEE, vol.96, no.5, pp.879-899, May.2008. DOI: http://dx.doi.org/10.1109/JPROC.2008.917757
  3. NVIDIA CUDA Programming Guide v2.1 8 Dec. 2008.
  4. E. Masakazu, "Machine Vision A Practical Technology for Advanced Image Processing," Japanese Technology Reviews, Computers and Communications, Grodon and Breach
  5. R.C. Gonzalez, and R.E. Woods, Digital Image Processing, 2nd Ed, Prentice-Hall, 2002.
  6. K. Hendengren, "Methodology for Automatic image-based inspection of industrial objects," in Advances in Machine Vision, Sanz J. ed, Springer-Verlag, 1988. DOI: http://dx.doi.org/1007/978-1-4612-4532-2_4
  7. R.T. Chin, and C.A. Harlow, "Automated Visual Inspection: A Survey," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.PAMI-4, No.6, pp. 557-573, 1982. DOI: http://dx.doi.org/10.1109/TPAMI.1982.4767309
  8. K.W. Tobin, "Inspection in Semiconductor Manufacturing," Webster's Encyclopedia of Electrical and Electronic Engineering, Vol.10, pp. 242-263, 1999.
  9. D. J., Kang, J. E. Ha, Digital Image Processing Using Visual C ++, SciTech media, chap 11, 2003.
  10. M. Sonka, V. Hlavac, and R. Boyle, "Image Processing Analysis and Machine Vision," Cengage Learning, 2007.
  11. "CUDA 2.1 Programing Guide", http://developer. download.nvidia.com/compute/cuda/2_1/toolkit/docs/ nVidia_CUDA_Programming_Guide_2.1.pdf
  12. Tom.R.halfhill, "Parallel Processing with CUDA", Reed Electronics Group, http://www.nvidia.com/docs/IO/55972 /220401_Reprint.pdf
  13. G. Poli, J. H. Saito, J. F. Mari, M. R. Zorzan, "Processing Neocognitron of Face Recognition on High Performance Environment Based on GPU with CUDA Architecture," International Symposium on Computer Architecture and High Performance Computing, pp.81-88, 2008. DOI: http://dx.doi.org/10.1109/SBAC-PAD.2008.25
  14. Intel Architecture Software Developer's Manual vol.1, 2, 3.
  15. N. Ashraf, Sibi. A, "CUDA-Accelerated Face Recognition," poster presentation, GPU Technology Conference, 2010.
  16. K.-W. Lee, "Implementation of Video Surveillance System with Motion Detection based on Network Camera Facilities", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 14, No. 1, pp.169-177, Feb. 28, 2014. DOI: http://dx.doi.org/10.7236/JIIBC.2014.14.1.169
  17. W. Lee, D. Nam, "Volume Rendering Architecture of Mobile Medical Image using Cloud Computing", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 14, No. 4, pp.101-106, Aug. 31, 2014. DOI: http://dx.doi.org/10.7236/JIIBC.2014.14.4.101
  18. I.-H. Jee, "Effective Compression Technique of Multi-view Image expressed by Layered Depth Image", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 14, No. 4, pp.29-37, Aug. 31, 2014. DOI: http://dx.doi.org/10.7236/JIIBC.2014.14.4.29