• 제목/요약/키워드: Algebraic structure

검색결과 197건 처리시간 0.024초

학교수학에서의 대수적 구조 지도에 대한 소고 (A study on the teaching of algebraic structures in school algebra)

  • 김성준
    • 한국학교수학회논문집
    • /
    • 제8권3호
    • /
    • pp.367-382
    • /
    • 2005
  • 본 연구는 학교수학에서 대수적 구조(군)의 지도에 관한 논의를 담고 있다. 이를 위해 먼저 Bruner가 제시한 지식의 구조에 대해 논의하고, 그 내용을 학교대수의 지도와 관련지어 살펴본다. 또한 대수적 구조 가운데 군 개념을 중심으로 하여 이와 관련된 선행연구를 Piaget, Freudenthal, Dubinsky, Burn 등의 논의에서 검토해본다. 그리고 초등수학에서부터 고등학교 수학까지 군 개념과 관련된 내용이 어떻게 표현되고 있는지를 살펴본다. 학교수학에서 군 개념과 관련된 내용은 초등수학에서부터 시작되는데, 초등수학의 경우 항등원, 교환법칙, 결합법칙 등을 수의 맥락에서 찾아볼 수 있다. 중학교 수학에서는 덧셈과 곱셈 연산에 있어서 항등원, 역원, 교환법칙, 결합법칙이 보다 구체적으로 제시되고 있으며, 이러한 규칙은 등식의 성질과 이항, 일차방정식의 풀이 등을 통해 살펴볼 수 있다. 고등학교 수학에서는 이항연산을 비롯한 여러 영역에서 군 개념을 포함하는 대수적 구조가 제시되고 있다. 이에 비해 학교대수에서는 이러한 주제들을 통합적으로 구성하려는 시도가 이루어지지 않고 있으며 각각의 내용이 독립적으로 다루어지고 있다. 본 연구에서는 학교대수에서 군 개념과 관련된 내용들을 검토함으로써 대수적구조(군) 측면에서 이러한 내용들을 종합해보고자 한다.

  • PDF

An Analysis of Fraction Operation Sense to Enhance Early Algebraic Thinking

  • Lee, Jiyoung;Pang, Jeongsuk
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제16권4호
    • /
    • pp.217-232
    • /
    • 2012
  • While many studies on early algebra have been conducted, there have been only a few studies on the operation sense as the fundamental element of algebraic thinking, especially the fraction operation sense. This study explored the dimensions of fraction operation sense and then investigated students' fraction operation sense. A total of 183 of sixth graders were surveyed and 5 students who showed high operation sense were clinically interviewed in order to analyze their algebraic thinking in detail. The results showed that students had a tendency to use direct calculation or employ inappropriate operation sense rather than to use the structure of operation or the relation between operations on the basis of algebraic thinking. This study implies that explicit instruction on early algebra is necessary from the elementary school years.

LEGENDRIAN RACK INVARIANTS OF LEGENDRIAN KNOTS

  • Ceniceros, Jose;Elhamdadi, Mohamed;Nelson, Sam
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.623-639
    • /
    • 2021
  • We define a new algebraic structure called Legendrian racks or racks with Legendrian structure, motivated by the front-projection Reidemeister moves for Legendrian knots. We provide examples of Legendrian racks and use these algebraic structures to define invariants of Legendrian knots with explicit computational examples. We classify Legendrian structures on racks with 3 and 4 elements. We use Legendrian racks to distinguish certain Legendrian knots which are equivalent as smooth knots.

대수적 구조를 가진 2단 연판정 출력 비터비 알고리듬 (A Two-Step Soft Output Viterbi Algorithm with Algebraic Structure)

  • 김우태;배상재;주언경
    • 한국통신학회논문지
    • /
    • 제26권12A호
    • /
    • pp.1983-1989
    • /
    • 2001
  • 본 논문에서는 터보복호기 설계를 위하여 2단 연판정 출력 비터비 알고리듬에 대수적 구조를 적용한 대수적 (algebraic) 2단 연판정 출력 비터비 알고리듬이 제시된다. 제시된 알고리듬은 대수적 구조를 이용함으로써 행렬화된 가지(branch) 및 상태(state) 메트릭의 병렬연산이 가능하다. 띠·라서 기존의 방식에 비해 곱의 연산량이 감소되며 전체 메모리가 줄어든다. 그러므로 제시된 대수적 2단 연판정 출력 비터비 알고리듬은 적은 계산량과 단순한 하드웨어가 요구되는 터보부호의 복호기에 적합할 것으로 사료된다.

  • PDF

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF

초등학생의 대수 추론 능력과 조기 대수(Early Algebra) 지도(1) (Algebraic Reasoning Abilities of Elementary School Students and Early Algebra Instruction(1))

  • 이화영;장경윤
    • 대한수학교육학회지:학교수학
    • /
    • 제14권4호
    • /
    • pp.445-468
    • /
    • 2012
  • 본 연구는 산술적 바탕 위에 있는 학생들이 형식적인 대수 추론으로 자연스럽게 이행하는 것을 돕고자, 초등학생들이 대수 문제를 접하였을 때 사용하는 대수 추론 전략을 조사하였다. 총 839명을 대상으로 초등학생의 대수 추론 방법을 조사한 결과, 초등학생들이 연립 일차방정식과 관련된 문장제의 해결에서 기존의 교과서에 제시된 방법 이외의 다양한 산술적 추론과 전형식적 대수 추론을 사용하는 것이 파악되었다. 또한, 대수 문제의 구조에 따라 학생들이 사용하는 추론 전략의 차이가 있음을 밝혔으며, 학생들의 대수 문제해결에서 나타나는 추론상의 오류의 원인을 분석하였다. 특히, 초등학생들이 사용하는'양적 추론'과 '비례적 추론'과 같은 전략들은 비형식적인 대입법, 이항법임을 밝혔다. 마지막으로, 이러한 전형식적 대수 추론들을 형식적 대수 추론으로 연결할 수 있는 가능성에 대하여 논의하였다.

  • PDF

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

PRODUCTS ON THE CHOW RINGS FOR TORIC VARIETIES

  • Park, Hye-Sook
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.469-479
    • /
    • 1996
  • Toric variety is a normal algebraic variety containing algebraic torus $T_N$ as an open dense subset with an algebraic action of $T_N$ which is an extension of the group law of $T_N$. A toric variety can be described in terms of a certain collection, which is called a fan, of cones. From this fact, the properties of a toric variety have strong connection with the combinatorial structure of the corresponding fan and the relations among the generators. That is, we can translate the diffcult algebrogeometric properties of toric varieties into very simple properties about the combinatorics of cones in affine spaces over the reals.

  • PDF

대수 증명에서 종속적 일반성의 인식 및 특정수 전이에 관한 연구 (Study on recognition of the dependent generality in algebraic proofs and its transition to numerical cases)

  • 강정기;장혜원
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권1호
    • /
    • pp.93-110
    • /
    • 2014
  • Algebra deals with so general properties about number system that it is called as 'generalized arithmetic'. Observing students' activities in algebra classes, however, we can discover that recognition of the generality in algebraic proofs is not so easy. One of these difficulties seems to be caused by variables which play an important role in algebraic proofs. Many studies show that students have experienced some difficulties in recognizing the meaning and the role of variables in algebraic proofs. For example, the confusion between 2m+2n=2(m+n) and 2n+2n=4n means that students misunderstand independent/dependent variation of variables. This misunderstanding naturally has effects on understanding of the meaning of proofs. Furthermore, students also have a difficulty in making a transition from algebraic proof to numerical cases which have the same structure as the proof. This study investigates whether middle school students can recognize dependent generality and make a transition from proofs to numerical cases. The result shows that the participants of this study have a difficulty in both of them. Based on the result, this study also includes didactical implications for teaching the generality of algebraic proofs.