• 제목/요약/키워드: Algebraic

검색결과 1,577건 처리시간 0.027초

대수적 사고와 대수 기호에 관한 고찰 (A Study on the Algebraic Notations and Algebraic Thinking)

  • 김성준
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제12권2호
    • /
    • pp.229-246
    • /
    • 2002
  • In this paper, we start with the question "what is algebraic thinking\ulcorner". The problem is that the algebraic thinking is not exactly defined. We consider algebraic thinking from the various perspectives. But in the discussion relating to the definition of algebraic thinking, we verify that there is the algebraic notations in the core of algebraic thinking. So we device algebraic notations into the six categories, and investigate these examples from the school mathematics. In order to investigate this relation of algebraic thinking and algebraic notations, we present 'the algebraic thinking process analysis model' from Frege' idea. In this model, there are three components of algebraic notations which interplays; sense, expression, denotapion. Thus many difficulties of algebraic thinking can be explained by this model. We suppose that the difficulty in the algebraic thinking may be caused by the discord of these three components. And through the transformation of conceptual frame, we can explain the dynamics of algebraic thinking. Also, we present examples which show these difficulties and dynamics of algebraic thinking. As a result of these analysis, we conclude that algebraic thinking can be explained through the semiotic aspects of algebraic notations.

  • PDF

대수의 사고 요소 분석 및 학습-지도 방안의 탐색 (Analysis of the Algebraic Thinking Factors and Search for the Direction of Its Learning and Teaching)

  • 우정호;김성준
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권4호
    • /
    • pp.453-475
    • /
    • 2007
  • 오늘날 문자의 도입과 함께 시작되는 학교대수는 초등수학에서 중등수학으로의 이행에서 가장 큰 장애요인이 되고 있다. 이는 산술과 차별화된 대수의 본질에 기인하는 것으로, 문자와 식, 방정식에서의 구문론적 측면을 강조하는 것만으로 해결 될 수 없다. 이에 최근 학교대수와 관련된 연구에서는 대수적 사고에 대한 논의가 집중적으로 다루어지고 있다. 본 연구는 대수적 사고 요소를 분석하여 산술에서 대수로의 이행과 초기 대수지도과정을 개선하기 위한 방안을 탐색해본 것이다. 먼저 역사-발생적, 인식론적, 기호-언어학적 관점으로부터 학교대수에서 요구되는 대수적 사고를 분석하고, 이로부터 형식 불역의 원리를 비롯하여 변수 개념과 양적인 추론, 대수적인 해석-식 세우기, 변환추론-식의 변형, 연산감각-식의 조작 등을 핵심적인 대수적 사고 요소로 확인한다. 그리고 초등학교와 중학교 수학 교과서를 분석하고 학생들을 대상으로 한 대수적 사고 능력 검사와 면담을 실시하고, 이를 토대로 학교수학에 포함된 대수적 사고 요소를 살펴본다. 또한 초등학교 수학에서부터 대수적 사고 요소를 강조함으로써 대수 입문기에 해당하는 중학교 이후의 대수 학습에 대한 준비와 더불어 대수적 사고 요소에 초점을 맞춘 산술에서 대수로의 이행을 이끌어내기 위한 지도 방안을 탐색해본다.

  • PDF

DEGREE BOUND FOR EVALUATION OF ALGEBRAIC FUNCTIONS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.505-510
    • /
    • 2011
  • We give a constructive proof that a (partial) evaluation of a multivariate algebraic function with algebraic numbers is again an algebraic function. Especially, we obtain a bound on the degree of an evaluation with the degrees of the original algebraic function and the algebraic numbers evaluated. Furthermore, we show that our bound is sharp with an example.

준구조 퍼지 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-style semantics for substructural fuzzy logics)

  • 양은석
    • 논리연구
    • /
    • 제19권2호
    • /
    • pp.295-322
    • /
    • 2016
  • 이 글에서 우리는 유니놈에 기반한 퍼지 논리를 위한 대수적 크립키형 의미론을 다룬다. 이를 위하여 먼저 유니놈에 기반한 논리체계들을 위한 대수적 의미론을 재고한다. 다음으로 유니놈에 기반한 체계들의 일반적 구조에서 다양한 종류의 일반적 대수적 크립키형 의미론을 소개하고 그것들을 대수적 의미론과 연관 짓는다. 마지막으로 우리는 유사하게 특수한 대수적 의미론을 소개하고 이를 또한 대수적 의미론과 연관 짓는다.

  • PDF

ALGEBRAIC SPECTRAL SUBSPACES OF OPERATORS WITH FINITE ASCENT

  • Han, Hyuk
    • 충청수학회지
    • /
    • 제29권4호
    • /
    • pp.677-686
    • /
    • 2016
  • Algebraic spectral subspaces were introduced by Johnson and Sinclair via a transnite sequence of spaces. Laursen simplified the definition of algebraic spectral subspace. Algebraic spectral subspaces are useful in automatic continuity theory of intertwining linear operators on Banach spaces. In this paper, we characterize algebraic spectral subspaces of operators with finite ascent. From this characterization we show that if T is a generalized scalar operator, then T has finite ascent.

ALGEBRAIC RICCI SOLITONS IN THE FINSLERIAN CASE

  • Jiao, Guocheng;Yan, Zaili
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.853-863
    • /
    • 2021
  • In this paper, we study algebraic Ricci solitons in the Finslerian case. We show that any simply connected Finslerian algebraic Ricci soliton is a Finslerian Ricci soliton. Furthermore, we study Randers algebraic Ricci solitons. It turns out that a shrinking, steady, or expanding Randers algebraic Ricci soliton with vanishing S-curvature is Einstein, locally Minkowskian, or Riemannian, respectively.

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function

  • Park, Noma;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1522-1539
    • /
    • 2002
  • In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.

3치 초일관 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-style Semantics for Three-valued Paraconsistent Logic)

  • 양은석
    • 논리연구
    • /
    • 제17권3호
    • /
    • pp.441-461
    • /
    • 2014
  • 이 글에서 우리는 3치 초일관 논리를 위한 한 종류의 크립키형 의미론 즉 대수적 크립키형 의미론을 다룬다. 이를 위하여 먼저 두 3치 체계를 소개하고 그에 상응하는 대수를 정의한 후 이 두 체계가 대수적으로 완전하다는 것을 보인다. 다음으로 이 체계들을 위한 대수적 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관짓는다.

  • PDF

초등학교 3학년 학생들의 대수적 사고에 대한 실태 분석 (An Analysis of Algebraic Thinking by Third Graders)

  • 방정숙;최인영
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제19권3호
    • /
    • pp.223-247
    • /
    • 2016
  • 초등 수학 교육에서 대수적 사고의 중요성이 부각되는 것과 관련하여 본 연구에서는 우리나라 3학년 학생 197명을 대상으로 대수적 사고에 대한 전반적인 실태와 문제해결 과정에서 드러나는 특징을 살펴보았다. 특히 우리나라 초등 수학과 교육과정에서는 대수적 사고 요소를 성취기준이나 지도상의 유의점으로 명시하고 있지 않지만 암묵적으로 지도되는 실정이기 때문에, 대수적 사고 요소를 강조한 외국의 사례와 비교 분석함으로써 우리나라 학생들의 대수적 사고의 특징을 파악할 것으로 기대되었다. 연구 결과 대체적으로 대수적 사고 요소에 대한 학습이 이루어진 선행 연구의 집단과 유사하게 높은 정답률을 보였다. 반면 우리나라 학생들이 사용한 해결 전략의 특징으로 등식과 방정식을 해결하는 과정에서 구조적인 전략 보다는 계산적인 전략이 주도적으로 나타났으며, 대수식을 나타낼 때 등호를 사용하여 구체적인 수를 도출하려는 경향을 알 수 있었다. 본 연구를 통하여 우리나라 초등학교 3학년 학생들의 대수적 사고에 대한 전반적인 실태를 파악하고 대수적 사고의 지도 방향에 대한 시사점을 모색하는데 도움이 될 것이라 기대한다.